Cargando…
Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation
Deep-learning models can realize the feature extraction and advanced abstraction of raw myoelectric signals without necessitating manual selection. Raw surface myoelectric signals are processed with a deep model in this study to investigate the feasibility of recognizing upper-limb motion intents an...
Autores principales: | Guo, Benzhen, Ma, Yanli, Yang, Jingjing, Wang, Zhihui, Zhang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785339/ https://www.ncbi.nlm.nih.gov/pubmed/33456452 http://dx.doi.org/10.1155/2020/8846021 |
Ejemplares similares
-
Use of a myoelectric upper limb orthosis for rehabilitation of the
upper limb in traumatic brain injury: A case report
por: Pundik, Svetlana, et al.
Publicado: (2020) -
Myoelectrically controlled wrist robot for stroke rehabilitation
por: Song, Rong, et al.
Publicado: (2013) -
Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits—A Systematic Review
por: Fu, Jirui, et al.
Publicado: (2022) -
Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees
por: Geng, Yanjuan, et al.
Publicado: (2017) -
Users’ and therapists’ perceptions of myoelectric multi-function upper limb prostheses with conventional and pattern recognition control
por: Franzke, Andreas W., et al.
Publicado: (2019)