Cargando…
Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining
Single-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of scRNAseq data. In this manuscript, we r...
Autores principales: | Alessandri, Luca, Cordero, Francesca, Beccuti, Marco, Licheri, Nicola, Arigoni, Maddalena, Olivero, Martina, Di Renzo, Maria Flavia, Sapino, Anna, Calogero, Raffaele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785742/ https://www.ncbi.nlm.nih.gov/pubmed/33402683 http://dx.doi.org/10.1038/s41540-020-00162-6 |
Ejemplares similares
-
Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis
por: Alessandri, Luca, et al.
Publicado: (2021) -
rCASC: reproducible classification analysis of single-cell sequencing data
por: Alessandrì, Luca, et al.
Publicado: (2019) -
SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer
por: Beccuti, Marco, et al.
Publicado: (2018) -
Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines
por: Kulkarni, Neha, et al.
Publicado: (2018) -
Optimizing a Massive Parallel Sequencing Workflow for Quantitative miRNA Expression Analysis
por: Cordero, Francesca, et al.
Publicado: (2012)