Cargando…
Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images
Deep learning technology is now used for medical imaging. YOLOv2 is an object detection model using deep learning. Here, we applied YOLOv2 to FDG-PET images to detect the physiological uptake on the images. We also investigated the detection precision of abnormal uptake by a combined technique with...
Autores principales: | Kawakami, Masashi, Hirata, Kenji, Furuya, Sho, Kobayashi, Kentaro, Sugimori, Hiroyuki, Magota, Keiichi, Katoh, Chietsugu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785870/ https://www.ncbi.nlm.nih.gov/pubmed/33425962 http://dx.doi.org/10.3389/fmed.2020.616746 |
Ejemplares similares
-
A convolutional neural network-based system to classify patients using FDG PET/CT examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2020) -
A convolutional neural network-based system to prevent patient misidentification in FDG-PET examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2019) -
A Preliminary Study to Use SUVmax of FDG PET-CT as an Identifier of Lesion for Artificial Intelligence
por: Hirata, Kenji, et al.
Publicado: (2021) -
PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease
por: Manabe, Osamu, et al.
Publicado: (2017) -
I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury
por: Abiko, Kagari, et al.
Publicado: (2017)