Cargando…
RA-UNet: A Hybrid Deep Attention-Aware Network to Extract Liver and Tumor in CT Scans
Automatic extraction of liver and tumor from CT volumes is a challenging task due to their heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks have become popular in medical image segmentation tasks because of the utilization of large labeled datasets to learn hierarc...
Autores principales: | Jin, Qiangguo, Meng, Zhaopeng, Sun, Changming, Cui, Hui, Su, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785874/ https://www.ncbi.nlm.nih.gov/pubmed/33425871 http://dx.doi.org/10.3389/fbioe.2020.605132 |
Ejemplares similares
-
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images
por: Jin, Qiangguo, et al.
Publicado: (2021) -
WERFE: A Gene Selection Algorithm Based on Recursive Feature Elimination and Ensemble Strategy
por: Chen, Qi, et al.
Publicado: (2020) -
Protein Interaction Network Reconstruction Through Ensemble Deep Learning With Attention Mechanism
por: Li, Feifei, et al.
Publicado: (2020) -
Deep learning with an attention mechanism for continuous biomechanical motion estimation across varied activities
por: Ding, Guanlin, et al.
Publicado: (2022)