Cargando…
Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis
OBJECTIVE: Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein k...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785956/ https://www.ncbi.nlm.nih.gov/pubmed/33271332 http://dx.doi.org/10.1016/j.molmet.2020.101133 |
_version_ | 1783632530406113280 |
---|---|
author | Shu, Yaoling Hassan, Faizule Coppola, Vincenzo Baskin, Kedryn K. Han, Xianlin Mehta, Neil K. Ostrowski, Michael C. Mehta, Kamal D. |
author_facet | Shu, Yaoling Hassan, Faizule Coppola, Vincenzo Baskin, Kedryn K. Han, Xianlin Mehta, Neil K. Ostrowski, Michael C. Mehta, Kamal D. |
author_sort | Shu, Yaoling |
collection | PubMed |
description | OBJECTIVE: Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS: The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS: We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS: The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis. |
format | Online Article Text |
id | pubmed-7785956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77859562021-01-08 Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis Shu, Yaoling Hassan, Faizule Coppola, Vincenzo Baskin, Kedryn K. Han, Xianlin Mehta, Neil K. Ostrowski, Michael C. Mehta, Kamal D. Mol Metab Original Article OBJECTIVE: Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS: The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS: We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS: The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis. Elsevier 2020-11-30 /pmc/articles/PMC7785956/ /pubmed/33271332 http://dx.doi.org/10.1016/j.molmet.2020.101133 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Shu, Yaoling Hassan, Faizule Coppola, Vincenzo Baskin, Kedryn K. Han, Xianlin Mehta, Neil K. Ostrowski, Michael C. Mehta, Kamal D. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title | Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title_full | Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title_fullStr | Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title_full_unstemmed | Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title_short | Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
title_sort | hepatocyte-specific pkcβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785956/ https://www.ncbi.nlm.nih.gov/pubmed/33271332 http://dx.doi.org/10.1016/j.molmet.2020.101133 |
work_keys_str_mv | AT shuyaoling hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT hassanfaizule hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT coppolavincenzo hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT baskinkedrynk hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT hanxianlin hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT mehtaneilk hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT ostrowskimichaelc hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis AT mehtakamald hepatocytespecificpkcbdeficiencyprotectsagainsthighfatdietinducednonalcoholichepaticsteatosis |