Cargando…
Induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic apoptotic pathways in primary effusion lymphoma
Primary effusion lymphoma (PEL) is an incurable non-Hodgkin's lymphoma and novel biology-based treatments are urgently needed in clinical settings. Shikonin (SHK), a napthoquinone derivative, has been used for the treatment of solid tumors. Here, we report that SHK is an effective agent for the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785961/ https://www.ncbi.nlm.nih.gov/pubmed/33401054 http://dx.doi.org/10.1016/j.tranon.2020.101006 |
Sumario: | Primary effusion lymphoma (PEL) is an incurable non-Hodgkin's lymphoma and novel biology-based treatments are urgently needed in clinical settings. Shikonin (SHK), a napthoquinone derivative, has been used for the treatment of solid tumors. Here, we report that SHK is an effective agent for the treatment of PEL. Treatment with SHK results in significant reduction of proliferation in PEL cells and their rapid apoptosis in vitro. SHK-induced apoptosis of PEL cells is accompanied by the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (Δψm), an activation of c-Jun-N-terminal kinase (JNK), p38, as well as caspase-3, -8, and -9. Scavenging of ROS in the presence of N-acetylcysteine (NAC) almost blocks the loss of mitochondrial membrane Δψm, activation of JNK, cleavage of caspase-3, -9, and an induction of apoptosis in SHK treated PEL cells. SP600125, a specific inhibitor of JNK, also rescues a proportion of cells from the apoptotic effect of SHK. In addition, inhibition of caspase activation in the presence of pan-caspase inhibitor, Q-VD-OPh, blocks the SHK-inducing apoptosis, but doesn't completely inhibit SHK-mediated JNK activation. Therefore, ROS is an upstream trigger of SHK-induced caspase dependent apoptosis of PEL cells through disruption of mitochondrial membrane Δψm in an intrinsic pathway and an activation of JNK in an extrinsic pathway. In a PEL xenografted mouse model, SHK treatment suppresses PEL-mediated ascites formation without showing any significant adverse toxicity. These results suggested that SHK could be a potent anti-tumor agent for the treatment of PEL. |
---|