Cargando…

Purified Bighead protein efficiently promotes head development in the South African clawed frog, Xenopus laevis

Vertebrate embryonic development is regulated by a few families of extracellular signaling molecules. Xenopus laevis embryos offer an excellent system to study the cell-cell communication signals that govern embryonic patterning. In the frog embryos, Wnt/β-catenin plays a pivotal role in regulating...

Descripción completa

Detalles Bibliográficos
Autor principal: Colozza, Gabriele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Caltech Library 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786221/
https://www.ncbi.nlm.nih.gov/pubmed/33426508
http://dx.doi.org/10.17912/micropub.biology.000347
Descripción
Sumario:Vertebrate embryonic development is regulated by a few families of extracellular signaling molecules. Xenopus laevis embryos offer an excellent system to study the cell-cell communication signals that govern embryonic patterning. In the frog embryos, Wnt/β-catenin plays a pivotal role in regulating embryonic axis development, and modulation of the Wnt pathway is required for proper antero-posterior patterning. Recently, a novel secreted, organizer-specific Wnt inhibitor, Bighead, was identified that acts by downregulating Lrp6 plasma membrane levels. Here, I describe a method to purify biologically active Bighead protein and confirm that Bighead promotes Xenopus head development.