Cargando…
3D Compressed Convolutional Neural Network Differentiates Neuromyelitis Optical Spectrum Disorders From Multiple Sclerosis Using Automated White Matter Hyperintensities Segmentations
BACKGROUND: Magnetic resonance imaging (MRI) has a wide range of applications in medical imaging. Recently, studies based on deep learning algorithms have demonstrated powerful processing capabilities for medical imaging data. Previous studies have mostly focused on common diseases that usually have...
Autores principales: | Wang, Zhuo, Yu, Zhezhou, Wang, Yao, Zhang, Huimao, Luo, Yishan, Shi, Lin, Wang, Yan, Guo, Chunjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786373/ https://www.ncbi.nlm.nih.gov/pubmed/33424635 http://dx.doi.org/10.3389/fphys.2020.612928 |
Ejemplares similares
-
Intra-Scanner and Inter-Scanner Reproducibility of Automatic White Matter Hyperintensities Quantification
por: Guo, Chunjie, et al.
Publicado: (2019) -
Validation of Automated White Matter Hyperintensity Segmentation
por: Smart, Sean D., et al.
Publicado: (2011) -
Optimizing automated white matter hyperintensity segmentation in individuals with stroke
por: Ferris, Jennifer K., et al.
Publicado: (2023) -
Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities
por: Ghafoorian, Mohsen, et al.
Publicado: (2017) -
White matter hyperintensities segmentation: a new semi-automated method
por: Iorio, Mariangela, et al.
Publicado: (2013)