Cargando…
Lateral lumbar interbody fusion after reduction using the percutaneous pedicle screw system in the lateral position for Meyerding grade II spondylolisthesis: a preliminary report of a new lumbar reconstruction strategy
BACKGROUND: Utilization of a cage with a large footprint in lateral lumbar interbody fusion (LLIF) for the treatment of spondylolisthesis leads to a high fusion rate and neurological improvement owing to the indirect decompression effect and excellent alignment correction. However, if an interbody s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786473/ https://www.ncbi.nlm.nih.gov/pubmed/33402131 http://dx.doi.org/10.1186/s12891-020-03935-6 |
Sumario: | BACKGROUND: Utilization of a cage with a large footprint in lateral lumbar interbody fusion (LLIF) for the treatment of spondylolisthesis leads to a high fusion rate and neurological improvement owing to the indirect decompression effect and excellent alignment correction. However, if an interbody space is too narrow for insertion of an LLIF cage for cases of spondylolisthesis of Meyerding grade II or higher, LLIF cannot be used. Therefore, we developed a novel strategy, LLIF after reduction by the percutaneous pedicle screw (PPS) insertion system in the lateral position (LIFARL), for surgeons to perform accurate and safe LLIF with PPS in patients with such pathology. This study aimed to introduce the new surgical strategy and to present preliminary clinical and radiological results of patients with spondylolisthesis of Meyerding grade II. METHODS: Six consecutive patients (four men and two women; mean age, 72.7 years-old; mean follow-up period, 15.3 months) with L4 spondylolisthesis of Meyerding grade II were included. Regarding the surgical procedure, first, PPSs were inserted into the L4 and L5 vertebrae fluoroscopically, and both rods were placed in the lateral position. The L5 set screws were fixed tightly, and the L4 side of the rod was floated. Second, the L4 vertebra was reduced by fastening the L4 set screws so that they expanded the anteroposterior width of the interbody space. At that time, the L4 set screws were not fully tightened to the rods to prevent the endplate injury. Finally, the LLIF procedure was started. After inserting the cage, a compression force was added to the PPSs, and the L4 set screws were completely fastened. RESULTS: The mean operative time was 183 min, and the mean blood loss was 90.8 mL. All cages were positioned properly. Visual analog scale score and Oswestry disability index improved postoperatively. Bone union was observed using computed tomography 12 months after surgery. CONCLUSION: For cases with difficulty in LLIF cage insertion for Meyerding grade II spondylolisthesis due to the narrow anteroposterior width of interbody space, LIFARL is an option to achieve LLIF combined with posterior PPS accurately and safely. TRIAL REGISTRATION: UMIN-Clinical Trials Registry, UMIN000040268, Registered 29 April 2020, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000045938 |
---|