Cargando…
Knockdown of long non-coding RNA LEF1-AS1 attenuates apoptosis and inflammatory injury of microglia cells following spinal cord injury
BACKGROUND: Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand it...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786481/ https://www.ncbi.nlm.nih.gov/pubmed/33407665 http://dx.doi.org/10.1186/s13018-020-02041-6 |
Sumario: | BACKGROUND: Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. METHODS: Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. RESULTS: We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. CONCLUSION: In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis. |
---|