Cargando…
Drivers of realized satellite tracking duration in marine turtles
BACKGROUND: Satellite tags have revolutionized our understanding of marine animal movements. However, tags may stop transmitting for many reasons and little research has rigorously examined tag failure. Using a long-term, large-scale, multi-species dataset, we evaluated factors influencing tracking...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786511/ https://www.ncbi.nlm.nih.gov/pubmed/33402218 http://dx.doi.org/10.1186/s40462-020-00237-3 |
_version_ | 1783632640236060672 |
---|---|
author | Hart, Kristen M. Guzy, Jacquelyn C. Smith, Brian J. |
author_facet | Hart, Kristen M. Guzy, Jacquelyn C. Smith, Brian J. |
author_sort | Hart, Kristen M. |
collection | PubMed |
description | BACKGROUND: Satellite tags have revolutionized our understanding of marine animal movements. However, tags may stop transmitting for many reasons and little research has rigorously examined tag failure. Using a long-term, large-scale, multi-species dataset, we evaluated factors influencing tracking duration of satellite tags to inform study design for future tracking studies. METHODS: We leveraged data on battery status transmitted with location data, recapture events, and number of transmission days to probabilistically quantify multiple potential causes of failure (i.e., battery failure, premature detachment, and tag damage/fouling). We used a combination of logistic regressions and an ordinary linear model including several predictor variables (i.e., tag type, battery life, species, sex, size, and foraging region). RESULTS: We examined subsets of data from 360 satellite tags encompassing 86,889 tracking days deployed on four species of marine turtles throughout the Gulf of Mexico, Caribbean, and Bahamas from 2008 to 2019. Only 4.1% of batteries died before failure due to other causes. We observed species-specific variation in how long tags remain attached: hawksbills retained 50% of their tags for 1649 days (95% CI 995–1800), loggerheads for 584 days (95% CI 400–690), and green turtles for 294 days (95% CI 198–450). Estimated tracking duration varied by foraging region (Caribbean: 385 days; Bahamas: 356; southern Gulf of Mexico [SGOM]: 276, northern Gulf of Mexico [NGOM]: 177). Additionally, we documented species-specific variation in estimated tracking duration among foraging regions. Based on sensor data, within the Gulf of Mexico, across species, we estimated that 50% of tags began to foul after 83 95% CI (70–120) days. CONCLUSIONS: The main factor that limited tracking duration was tag damage (i.e., fouling and/or antenna breakage). Turtles that spent most of their time in the Gulf of Mexico had shorter tracking durations than those in the Bahamas and Caribbean, with shortest durations observed in the NGOM. Additionally, tracking duration varied by species, likely as a result of behaviors that damage tags. This information will help researchers, tag companies, permitting agencies, and funders better predict expected tracking durations, improving study designs for imperiled marine turtles. Our results highlight the heterogeneity in telemetry device longevity, and we provide a framework for researchers to evaluate telemetry devices with respect to their study objectives. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40462-020-00237-3. |
format | Online Article Text |
id | pubmed-7786511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-77865112021-01-07 Drivers of realized satellite tracking duration in marine turtles Hart, Kristen M. Guzy, Jacquelyn C. Smith, Brian J. Mov Ecol Research BACKGROUND: Satellite tags have revolutionized our understanding of marine animal movements. However, tags may stop transmitting for many reasons and little research has rigorously examined tag failure. Using a long-term, large-scale, multi-species dataset, we evaluated factors influencing tracking duration of satellite tags to inform study design for future tracking studies. METHODS: We leveraged data on battery status transmitted with location data, recapture events, and number of transmission days to probabilistically quantify multiple potential causes of failure (i.e., battery failure, premature detachment, and tag damage/fouling). We used a combination of logistic regressions and an ordinary linear model including several predictor variables (i.e., tag type, battery life, species, sex, size, and foraging region). RESULTS: We examined subsets of data from 360 satellite tags encompassing 86,889 tracking days deployed on four species of marine turtles throughout the Gulf of Mexico, Caribbean, and Bahamas from 2008 to 2019. Only 4.1% of batteries died before failure due to other causes. We observed species-specific variation in how long tags remain attached: hawksbills retained 50% of their tags for 1649 days (95% CI 995–1800), loggerheads for 584 days (95% CI 400–690), and green turtles for 294 days (95% CI 198–450). Estimated tracking duration varied by foraging region (Caribbean: 385 days; Bahamas: 356; southern Gulf of Mexico [SGOM]: 276, northern Gulf of Mexico [NGOM]: 177). Additionally, we documented species-specific variation in estimated tracking duration among foraging regions. Based on sensor data, within the Gulf of Mexico, across species, we estimated that 50% of tags began to foul after 83 95% CI (70–120) days. CONCLUSIONS: The main factor that limited tracking duration was tag damage (i.e., fouling and/or antenna breakage). Turtles that spent most of their time in the Gulf of Mexico had shorter tracking durations than those in the Bahamas and Caribbean, with shortest durations observed in the NGOM. Additionally, tracking duration varied by species, likely as a result of behaviors that damage tags. This information will help researchers, tag companies, permitting agencies, and funders better predict expected tracking durations, improving study designs for imperiled marine turtles. Our results highlight the heterogeneity in telemetry device longevity, and we provide a framework for researchers to evaluate telemetry devices with respect to their study objectives. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40462-020-00237-3. BioMed Central 2021-01-05 /pmc/articles/PMC7786511/ /pubmed/33402218 http://dx.doi.org/10.1186/s40462-020-00237-3 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Hart, Kristen M. Guzy, Jacquelyn C. Smith, Brian J. Drivers of realized satellite tracking duration in marine turtles |
title | Drivers of realized satellite tracking duration in marine turtles |
title_full | Drivers of realized satellite tracking duration in marine turtles |
title_fullStr | Drivers of realized satellite tracking duration in marine turtles |
title_full_unstemmed | Drivers of realized satellite tracking duration in marine turtles |
title_short | Drivers of realized satellite tracking duration in marine turtles |
title_sort | drivers of realized satellite tracking duration in marine turtles |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786511/ https://www.ncbi.nlm.nih.gov/pubmed/33402218 http://dx.doi.org/10.1186/s40462-020-00237-3 |
work_keys_str_mv | AT hartkristenm driversofrealizedsatellitetrackingdurationinmarineturtles AT guzyjacquelync driversofrealizedsatellitetrackingdurationinmarineturtles AT smithbrianj driversofrealizedsatellitetrackingdurationinmarineturtles |