Cargando…
Effect of ultrasonic frequency and surfactant addition on microcapsule destruction
In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are no...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786529/ https://www.ncbi.nlm.nih.gov/pubmed/32871383 http://dx.doi.org/10.1016/j.ultsonch.2020.105308 |
_version_ | 1783632644277272576 |
---|---|
author | Inui, Ayaka Honda, Atsushi Yamanaka, Shohei Ikeno, Takashi Yamamoto, Ken |
author_facet | Inui, Ayaka Honda, Atsushi Yamanaka, Shohei Ikeno, Takashi Yamamoto, Ken |
author_sort | Inui, Ayaka |
collection | PubMed |
description | In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are not involved in the sonochemical reaction. The activity in and around the bubble (e.g., shear stress, shock wave, microjet, sonochemical reaction, and sonoluminescence) varies substantially depending on the bubble size. In this study, we investigated the mechanism of the ultrasonic destruction of microcapsules by examining the correlations between frequency and microcapsule destruction rate and between microcapsule size and cavitation bubble size. We evaluated the bubbles using multibubble sonoluminescence and the bubble size was changed by adding a surfactant to the microcapsule suspension. The microcapsule destruction was frequency dependent. The main cause of microcapsule destruction was identified as mechanical resonance, although the relationship between bubble size and microcapsule size suggested that bubbles smaller than or equal to the microcapsule size may also destroy microcapsules by applying shear stress locally. |
format | Online Article Text |
id | pubmed-7786529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77865292021-01-06 Effect of ultrasonic frequency and surfactant addition on microcapsule destruction Inui, Ayaka Honda, Atsushi Yamanaka, Shohei Ikeno, Takashi Yamamoto, Ken Ultrason Sonochem Original Research Article In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are not involved in the sonochemical reaction. The activity in and around the bubble (e.g., shear stress, shock wave, microjet, sonochemical reaction, and sonoluminescence) varies substantially depending on the bubble size. In this study, we investigated the mechanism of the ultrasonic destruction of microcapsules by examining the correlations between frequency and microcapsule destruction rate and between microcapsule size and cavitation bubble size. We evaluated the bubbles using multibubble sonoluminescence and the bubble size was changed by adding a surfactant to the microcapsule suspension. The microcapsule destruction was frequency dependent. The main cause of microcapsule destruction was identified as mechanical resonance, although the relationship between bubble size and microcapsule size suggested that bubbles smaller than or equal to the microcapsule size may also destroy microcapsules by applying shear stress locally. Elsevier 2020-08-17 /pmc/articles/PMC7786529/ /pubmed/32871383 http://dx.doi.org/10.1016/j.ultsonch.2020.105308 Text en © 2020 Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Inui, Ayaka Honda, Atsushi Yamanaka, Shohei Ikeno, Takashi Yamamoto, Ken Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title | Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title_full | Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title_fullStr | Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title_full_unstemmed | Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title_short | Effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
title_sort | effect of ultrasonic frequency and surfactant addition on microcapsule destruction |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786529/ https://www.ncbi.nlm.nih.gov/pubmed/32871383 http://dx.doi.org/10.1016/j.ultsonch.2020.105308 |
work_keys_str_mv | AT inuiayaka effectofultrasonicfrequencyandsurfactantadditiononmicrocapsuledestruction AT hondaatsushi effectofultrasonicfrequencyandsurfactantadditiononmicrocapsuledestruction AT yamanakashohei effectofultrasonicfrequencyandsurfactantadditiononmicrocapsuledestruction AT ikenotakashi effectofultrasonicfrequencyandsurfactantadditiononmicrocapsuledestruction AT yamamotoken effectofultrasonicfrequencyandsurfactantadditiononmicrocapsuledestruction |