Cargando…
Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water
The use of cavitation for improving biofilm cleaning is of great interest. There is no system at present that removes the biofilm from medical implants effectively and specifically from dental implants. Cavitation generated by a vibrating dental ultrasonic scaler tip can clean biomaterials such as d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786568/ https://www.ncbi.nlm.nih.gov/pubmed/32979637 http://dx.doi.org/10.1016/j.ultsonch.2020.105338 |
_version_ | 1783632653113622528 |
---|---|
author | Vyas, N. Wang, Q.X. Walmsley, A.D. |
author_facet | Vyas, N. Wang, Q.X. Walmsley, A.D. |
author_sort | Vyas, N. |
collection | PubMed |
description | The use of cavitation for improving biofilm cleaning is of great interest. There is no system at present that removes the biofilm from medical implants effectively and specifically from dental implants. Cavitation generated by a vibrating dental ultrasonic scaler tip can clean biomaterials such as dental implants. However, the cleaning process must be significantly accelerated for clinical applications. In this study we investigated whether the cavitation could be increased, by operating the scaler in carbonated water with different CO(2) concentrations. The cavitation around an ultrasonic scaler tip was recorded with high speed imaging. Image analysis was used to calculate the area of cavitation. Bacterial biofilm was grown on surfaces and its removal was imaged with a high speed camera using the ultrasonic scaler in still and carbonated water. Cavitation increases significantly with increasing carbonation. Cavitation also started earlier around the tips when they were in carbonated water compared to non-carbonated water. Significantly more biofilm was removed when the scaler was operated in carbonated water. Our results suggest that using carbonated water could significantly increase and accelerate cavitation around ultrasonic scalers in a clinical situation and thus improve biofilm removal from dental implants and other biomaterials. |
format | Online Article Text |
id | pubmed-7786568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77865682021-01-06 Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water Vyas, N. Wang, Q.X. Walmsley, A.D. Ultrason Sonochem Original Research Article The use of cavitation for improving biofilm cleaning is of great interest. There is no system at present that removes the biofilm from medical implants effectively and specifically from dental implants. Cavitation generated by a vibrating dental ultrasonic scaler tip can clean biomaterials such as dental implants. However, the cleaning process must be significantly accelerated for clinical applications. In this study we investigated whether the cavitation could be increased, by operating the scaler in carbonated water with different CO(2) concentrations. The cavitation around an ultrasonic scaler tip was recorded with high speed imaging. Image analysis was used to calculate the area of cavitation. Bacterial biofilm was grown on surfaces and its removal was imaged with a high speed camera using the ultrasonic scaler in still and carbonated water. Cavitation increases significantly with increasing carbonation. Cavitation also started earlier around the tips when they were in carbonated water compared to non-carbonated water. Significantly more biofilm was removed when the scaler was operated in carbonated water. Our results suggest that using carbonated water could significantly increase and accelerate cavitation around ultrasonic scalers in a clinical situation and thus improve biofilm removal from dental implants and other biomaterials. Elsevier 2020-09-03 /pmc/articles/PMC7786568/ /pubmed/32979637 http://dx.doi.org/10.1016/j.ultsonch.2020.105338 Text en Crown Copyright © 2020 Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Vyas, N. Wang, Q.X. Walmsley, A.D. Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title | Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title_full | Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title_fullStr | Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title_full_unstemmed | Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title_short | Improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
title_sort | improved biofilm removal using cavitation from a dental ultrasonic scaler vibrating in carbonated water |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786568/ https://www.ncbi.nlm.nih.gov/pubmed/32979637 http://dx.doi.org/10.1016/j.ultsonch.2020.105338 |
work_keys_str_mv | AT vyasn improvedbiofilmremovalusingcavitationfromadentalultrasonicscalervibratingincarbonatedwater AT wangqx improvedbiofilmremovalusingcavitationfromadentalultrasonicscalervibratingincarbonatedwater AT walmsleyad improvedbiofilmremovalusingcavitationfromadentalultrasonicscalervibratingincarbonatedwater |