Cargando…
Novel non-invasive particles in exhaled air method to explore the lining fluid of small airways—a European population-based cohort study
INTRODUCTION: Respiratory tract lining fluid of small airways mainly consists of surfactant that can be investigated by collection of the particles of exhaled aerosol (PExA) method. This offers an exciting prospect to monitor small airway pathology, including subjects with asthma and smokers. AIM: T...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786806/ https://www.ncbi.nlm.nih.gov/pubmed/33402401 http://dx.doi.org/10.1136/bmjresp-2020-000804 |
Sumario: | INTRODUCTION: Respiratory tract lining fluid of small airways mainly consists of surfactant that can be investigated by collection of the particles of exhaled aerosol (PExA) method. This offers an exciting prospect to monitor small airway pathology, including subjects with asthma and smokers. AIM: To explore the influence of anthropometric factors and gender on phospholipids, surfactant protein A (SP-A) and albumin of the lining fluid of small airwaysand to examine the association with asthma and smoking. Furthermore, to examine if the surfactant components can predict lung function in terms of spirometry variables. METHOD: This study employs the population-based cohort of the European Community Respiratory Health Survey III, including participants from Gothenburg city, Sweden (n=200). The PExA method enabled quantitative description and analytical analysis of phospholipids, SP-A and albumin of the lining fluid of small airways. RESULTS: Age was a significant predictor of the phospholipids. The components PC14:0/16:0, PC16:0/18:2 (PC, phosphatidylcholine) and SP-A were higher among subjects with asthma, whereas albumin was lower. Among smokers, there were higher levels particularly of di-palmitoyl-di-phosphatidyl-choline compared with non-smokers. Most phospholipids significantly predicted the spirometry variables. CONCLUSION: This non-invasive PExA method appears to have great potential to explore the role of lipids and proteins of surfactant in respiratory disease. |
---|