Cargando…
Fair compute loads enabled by blockchain: sharing models by alternating client and server roles
OBJECTIVE: Decentralized privacy-preserving predictive modeling enables multiple institutions to learn a more generalizable model on healthcare or genomic data by sharing the partially trained models instead of patient-level data, while avoiding risks such as single point of control. State-of-the-ar...
Autores principales: | Kuo, Tsung-Ting, Gabriel, Rodney A, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787356/ https://www.ncbi.nlm.nih.gov/pubmed/30892656 http://dx.doi.org/10.1093/jamia/ocy180 |
Ejemplares similares
-
EXpectation Propagation LOgistic REgRession on permissioned blockCHAIN (ExplorerChain): decentralized online healthcare/genomics predictive model learning
por: Kuo, Tsung-Ting, et al.
Publicado: (2020) -
Blockchain-enabled immutable, distributed, and highly available clinical research activity logging system for federated COVID-19 data analysis from multiple institutions
por: Kuo, Tsung-Ting, et al.
Publicado: (2023) -
Privacy-preserving model learning on a blockchain network-of-networks
por: Kuo, Tsung-Ting, et al.
Publicado: (2020) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
Blockchain distributed ledger technologies for biomedical and health care applications
por: Kuo, Tsung-Ting, et al.
Publicado: (2017)