Cargando…
Recurrent disease progression networks for modelling risk trajectory of heart failure
MOTIVATION: Recurrent neural networks (RNN) are powerful frameworks to model medical time series records. Recent studies showed improved accuracy of predicting future medical events (e.g., readmission, mortality) by leveraging large amount of high-dimensional data. However, very few studies have exp...
Autores principales: | Lu, Xing Han, Liu, Aihua, Fuh, Shih-Chieh, Lian, Yi, Guo, Liming, Yang, Yi, Marelli, Ariane, Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787457/ https://www.ncbi.nlm.nih.gov/pubmed/33406155 http://dx.doi.org/10.1371/journal.pone.0245177 |
Ejemplares similares
-
Coding with transient trajectories in recurrent neural networks
por: Bondanelli, Giulio, et al.
Publicado: (2020) -
Distinct trajectories of fatigue in chronic heart failure and their association with prognosis
por: Smith, Otto R.F., et al.
Publicado: (2010) -
The fascial system and exercise intolerance in patients with chronic heart failure: hypothesis of osteopathic treatment
por: Bordoni, Bruno, et al.
Publicado: (2015) -
Using recurrent neural network models for early detection of heart failure onset
por: Choi, Edward, et al.
Publicado: (2017) -
Multi-system trajectories and the incidence of heart failure in the Framingham Offspring Study
por: Guardino, Cara E., et al.
Publicado: (2022)