Cargando…

Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis

The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinzke, Tjorven, Kleiner, Manuel, Meister, Mareike, Schlüter, Rabea, Hentschker, Christian, Pané-Farré, Jan, Hildebrandt, Petra, Felbeck, Horst, Sievert, Stefan M, Bonn, Florian, Völker, Uwe, Becher, Dörte, Schweder, Thomas, Markert, Stephanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787665/
https://www.ncbi.nlm.nih.gov/pubmed/33404502
http://dx.doi.org/10.7554/eLife.58371
_version_ 1783632870160465920
author Hinzke, Tjorven
Kleiner, Manuel
Meister, Mareike
Schlüter, Rabea
Hentschker, Christian
Pané-Farré, Jan
Hildebrandt, Petra
Felbeck, Horst
Sievert, Stefan M
Bonn, Florian
Völker, Uwe
Becher, Dörte
Schweder, Thomas
Markert, Stephanie
author_facet Hinzke, Tjorven
Kleiner, Manuel
Meister, Mareike
Schlüter, Rabea
Hentschker, Christian
Pané-Farré, Jan
Hildebrandt, Petra
Felbeck, Horst
Sievert, Stefan M
Bonn, Florian
Völker, Uwe
Becher, Dörte
Schweder, Thomas
Markert, Stephanie
author_sort Hinzke, Tjorven
collection PubMed
description The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
format Online
Article
Text
id pubmed-7787665
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-77876652021-01-11 Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis Hinzke, Tjorven Kleiner, Manuel Meister, Mareike Schlüter, Rabea Hentschker, Christian Pané-Farré, Jan Hildebrandt, Petra Felbeck, Horst Sievert, Stefan M Bonn, Florian Völker, Uwe Becher, Dörte Schweder, Thomas Markert, Stephanie eLife Microbiology and Infectious Disease The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole. eLife Sciences Publications, Ltd 2021-01-06 /pmc/articles/PMC7787665/ /pubmed/33404502 http://dx.doi.org/10.7554/eLife.58371 Text en © 2021, Hinzke et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Microbiology and Infectious Disease
Hinzke, Tjorven
Kleiner, Manuel
Meister, Mareike
Schlüter, Rabea
Hentschker, Christian
Pané-Farré, Jan
Hildebrandt, Petra
Felbeck, Horst
Sievert, Stefan M
Bonn, Florian
Völker, Uwe
Becher, Dörte
Schweder, Thomas
Markert, Stephanie
Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title_full Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title_fullStr Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title_full_unstemmed Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title_short Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
title_sort bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
topic Microbiology and Infectious Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787665/
https://www.ncbi.nlm.nih.gov/pubmed/33404502
http://dx.doi.org/10.7554/eLife.58371
work_keys_str_mv AT hinzketjorven bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT kleinermanuel bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT meistermareike bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT schluterrabea bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT hentschkerchristian bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT panefarrejan bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT hildebrandtpetra bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT felbeckhorst bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT sievertstefanm bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT bonnflorian bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT volkeruwe bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT becherdorte bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT schwederthomas bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis
AT markertstephanie bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis