Cargando…
Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple m...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787665/ https://www.ncbi.nlm.nih.gov/pubmed/33404502 http://dx.doi.org/10.7554/eLife.58371 |
_version_ | 1783632870160465920 |
---|---|
author | Hinzke, Tjorven Kleiner, Manuel Meister, Mareike Schlüter, Rabea Hentschker, Christian Pané-Farré, Jan Hildebrandt, Petra Felbeck, Horst Sievert, Stefan M Bonn, Florian Völker, Uwe Becher, Dörte Schweder, Thomas Markert, Stephanie |
author_facet | Hinzke, Tjorven Kleiner, Manuel Meister, Mareike Schlüter, Rabea Hentschker, Christian Pané-Farré, Jan Hildebrandt, Petra Felbeck, Horst Sievert, Stefan M Bonn, Florian Völker, Uwe Becher, Dörte Schweder, Thomas Markert, Stephanie |
author_sort | Hinzke, Tjorven |
collection | PubMed |
description | The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole. |
format | Online Article Text |
id | pubmed-7787665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-77876652021-01-11 Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis Hinzke, Tjorven Kleiner, Manuel Meister, Mareike Schlüter, Rabea Hentschker, Christian Pané-Farré, Jan Hildebrandt, Petra Felbeck, Horst Sievert, Stefan M Bonn, Florian Völker, Uwe Becher, Dörte Schweder, Thomas Markert, Stephanie eLife Microbiology and Infectious Disease The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole. eLife Sciences Publications, Ltd 2021-01-06 /pmc/articles/PMC7787665/ /pubmed/33404502 http://dx.doi.org/10.7554/eLife.58371 Text en © 2021, Hinzke et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Microbiology and Infectious Disease Hinzke, Tjorven Kleiner, Manuel Meister, Mareike Schlüter, Rabea Hentschker, Christian Pané-Farré, Jan Hildebrandt, Petra Felbeck, Horst Sievert, Stefan M Bonn, Florian Völker, Uwe Becher, Dörte Schweder, Thomas Markert, Stephanie Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title | Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title_full | Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title_fullStr | Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title_full_unstemmed | Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title_short | Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
title_sort | bacterial symbiont subpopulations have different roles in a deep-sea symbiosis |
topic | Microbiology and Infectious Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787665/ https://www.ncbi.nlm.nih.gov/pubmed/33404502 http://dx.doi.org/10.7554/eLife.58371 |
work_keys_str_mv | AT hinzketjorven bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT kleinermanuel bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT meistermareike bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT schluterrabea bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT hentschkerchristian bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT panefarrejan bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT hildebrandtpetra bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT felbeckhorst bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT sievertstefanm bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT bonnflorian bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT volkeruwe bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT becherdorte bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT schwederthomas bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis AT markertstephanie bacterialsymbiontsubpopulationshavedifferentrolesinadeepseasymbiosis |