Cargando…

Water Quality Prediction Using Artificial Intelligence Algorithms

During the last years, water quality has been threatened by various pollutants. Therefore, modeling and predicting water quality have become very important in controlling water pollution. In this work, advanced artificial intelligence (AI) algorithms are developed to predict water quality index (WQI...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldhyani, Theyazn H. H, Al-Yaari, Mohammed, Alkahtani, Hasan, Maashi, Mashael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787777/
https://www.ncbi.nlm.nih.gov/pubmed/33456498
http://dx.doi.org/10.1155/2020/6659314
Descripción
Sumario:During the last years, water quality has been threatened by various pollutants. Therefore, modeling and predicting water quality have become very important in controlling water pollution. In this work, advanced artificial intelligence (AI) algorithms are developed to predict water quality index (WQI) and water quality classification (WQC). For the WQI prediction, artificial neural network models, namely nonlinear autoregressive neural network (NARNET) and long short-term memory (LSTM) deep learning algorithm, have been developed. In addition, three machine learning algorithms, namely, support vector machine (SVM), K-nearest neighbor (K-NN), and Naive Bayes, have been used for the WQC forecasting. The used dataset has 7 significant parameters, and the developed models were evaluated based on some statistical parameters. The results revealed that the proposed models can accurately predict WQI and classify the water quality according to superior robustness. Prediction results demonstrated that the NARNET model performed slightly better than the LSTM for the prediction of the WQI values and the SVM algorithm has achieved the highest accuracy (97.01%) for the WQC prediction. Furthermore, the NARNET and LSTM models have achieved similar accuracy for the testing phase with a slight difference in the regression coefficient (RNARNET = 96.17% and RLSTM = 94.21%). This kind of promising research can contribute significantly to water management.