Cargando…
An Empirical Investigation of Transfer Effects for Reinforcement Learning
Previous studies have shown that training a reinforcement model for the sorting problem takes very long time, even for small sets of data. To study whether transfer learning could improve the training process of reinforcement learning, we employ Q-learning as the base of the reinforcement learning a...
Autores principales: | Jwo, Jung-Sing, Lin, Ching-Sheng, Lee, Cheng-Hsiung, Lo, Ya-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787843/ https://www.ncbi.nlm.nih.gov/pubmed/33456453 http://dx.doi.org/10.1155/2020/8873057 |
Ejemplares similares
-
Data Twin-Driven Cyber-Physical Factory for Smart Manufacturing
por: Jwo, Jung-Sing, et al.
Publicado: (2022) -
Adapting Static and Contextual Representations for Policy Gradient-Based Summarization
por: Lin, Ching-Sheng, et al.
Publicado: (2023) -
Using Transfer Learning Method to Develop an Artificial Intelligence Assisted Triaging for Endotracheal Tube Position on Chest X-ray
por: Yuan, Kuo-Ching, et al.
Publicado: (2021) -
Effectiveness of differentiated instruction on learning outcomes and learning satisfaction in the evidence‐based nursing course: Empirical research quantitative
por: Liou, Shwu‐Ru, et al.
Publicado: (2023) -
Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning
por: Hua, Jiang, et al.
Publicado: (2021)