Cargando…
Effect-Size Estimation Using Semiparametric Hierarchical Mixture Models in Disease-Association Studies with Neuroimaging Data
In disease-association studies using neuroimaging data, evaluating the biological or clinical significance of individual associations requires not only detection of disease-associated areas of the brain but also estimation of the magnitudes of the associations or effect sizes for individual brain ar...
Autores principales: | Emoto, Ryo, Kawaguchi, Atsushi, Takahashi, Kunihiko, Matsui, Shigeyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787870/ https://www.ncbi.nlm.nih.gov/pubmed/33488762 http://dx.doi.org/10.1155/2020/7482403 |
Ejemplares similares
-
An Empirical Bayes Optimal Discovery Procedure Based on Semiparametric Hierarchical Mixture Models
por: Noma, Hisashi, et al.
Publicado: (2013) -
Semiparametric modelling of two-component mixtures with stochastic dominance
por: Wu, Jingjing, et al.
Publicado: (2022) -
Statistical Generalized Derivative Applied to the Profile Likelihood Estimation in a Mixture of Semiparametric Models
por: Hirose, Yuichi, et al.
Publicado: (2020) -
Efficient and adaptive estimation for semiparametric models /
Publicado: (1993) -
Estimation in semiparametric models: some recent developments
por: Pfanzagl, Johann
Publicado: (1990)