Cargando…
Explainable artificial intelligence for heart rate variability in ECG signal
Electrocardiogram (ECG) signal is one of the most reliable methods to analyse the cardiovascular system. In the literature, there are different deep learning architectures proposed to detect various types of tachycardia diseases, such as atrial fibrillation, ventricular fibrillation, and sinus tachy...
Autores principales: | K., Sanjana, V., Sowmya, E.A., Gopalakrishnan, K.P., Soman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787999/ https://www.ncbi.nlm.nih.gov/pubmed/33425369 http://dx.doi.org/10.1049/htl.2020.0033 |
Ejemplares similares
-
ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
por: Akbilgic, Oguz, et al.
Publicado: (2021) -
Identifying Heart Failure in ECG Data With Artificial Intelligence—A Meta-Analysis
por: Grün, Dimitri, et al.
Publicado: (2021) -
ECG Multi-Emotion Recognition Based on Heart Rate Variability Signal Features Mining
por: Wang, Ling, et al.
Publicado: (2023) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022) -
Artificial Intelligence-Enhanced Smartwatch ECG for Heart Failure-Reduced Ejection Fraction Detection by Generating 12-Lead ECG
por: Kwon, Joon-myoung, et al.
Publicado: (2022)