Cargando…

Costs and consequences of using average demand to plan baseline nurse staffing levels: a computer simulation study

BACKGROUND: Planning numbers of nursing staff allocated to each hospital ward (the ‘staffing establishment’) is challenging because both demand for and supply of staff vary. Having low numbers of registered nurses working on a shift is associated with worse quality of care and adverse patient outcom...

Descripción completa

Detalles Bibliográficos
Autores principales: Saville, Christina, Monks, Thomas, Griffiths, Peter, Ball, Jane Elisabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788209/
https://www.ncbi.nlm.nih.gov/pubmed/32217698
http://dx.doi.org/10.1136/bmjqs-2019-010569
Descripción
Sumario:BACKGROUND: Planning numbers of nursing staff allocated to each hospital ward (the ‘staffing establishment’) is challenging because both demand for and supply of staff vary. Having low numbers of registered nurses working on a shift is associated with worse quality of care and adverse patient outcomes, including higher risk of patient safety incidents. Most nurse staffing tools recommend setting staffing levels at the average needed but modelling studies suggest that this may not lead to optimal levels. OBJECTIVE: Using computer simulation to estimate the costs and understaffing/overstaffing rates delivered/caused by different approaches to setting staffing establishments. METHODS: We used patient and roster data from 81 inpatient wards in four English hospital Trusts to develop a simulation of nurse staffing. Outcome measures were understaffed/overstaffed patient shifts and the cost per patient-day. We compared staffing establishments based on average demand with higher and lower baseline levels, using an evidence-based tool to assess daily demand and to guide flexible staff redeployments and temporary staffing hires to make up any shortfalls. RESULTS: When baseline staffing was set to meet the average demand, 32% of patient shifts were understaffed by more than 15% after redeployment and hiring from a limited pool of temporary staff. Higher baseline staffing reduced understaffing rates to 21% of patient shifts. Flexible staffing reduced both overstaffing and understaffing but when used with low staffing establishments, the risk of critical understaffing was high, unless temporary staff were unlimited, which was associated with high costs. CONCLUSION: While it is common practice to base staffing establishments on average demand, our results suggest that this may lead to more understaffing than setting establishments at higher levels. Flexible staffing, while an important adjunct to the baseline staffing, was most effective at avoiding understaffing when high numbers of permanent staff were employed. Low staffing establishments with flexible staffing saved money because shifts were unfilled rather than due to efficiencies. Thus, employing low numbers of permanent staff (and relying on temporary staff and redeployments) risks quality of care and patient safety.