Cargando…
Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788447/ https://www.ncbi.nlm.nih.gov/pubmed/33245190 http://dx.doi.org/10.15252/embr.202050500 |
_version_ | 1783633034756489216 |
---|---|
author | Cirotti, Claudia Rizza, Salvatore Giglio, Paola Poerio, Noemi Allega, Maria Francesca Claps, Giuseppina Pecorari, Chiara Lee, Ji‐Hoon Benassi, Barbara Barilà, Daniela Robert, Caroline Stamler, Jonathan S Cecconi, Francesco Fraziano, Maurizio Paull, Tanya T Filomeni, Giuseppe |
author_facet | Cirotti, Claudia Rizza, Salvatore Giglio, Paola Poerio, Noemi Allega, Maria Francesca Claps, Giuseppina Pecorari, Chiara Lee, Ji‐Hoon Benassi, Barbara Barilà, Daniela Robert, Caroline Stamler, Jonathan S Cecconi, Francesco Fraziano, Maurizio Paull, Tanya T Filomeni, Giuseppe |
author_sort | Cirotti, Claudia |
collection | PubMed |
description | The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox‐mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox‐insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T‐cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function. |
format | Online Article Text |
id | pubmed-7788447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77884472021-01-11 Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress Cirotti, Claudia Rizza, Salvatore Giglio, Paola Poerio, Noemi Allega, Maria Francesca Claps, Giuseppina Pecorari, Chiara Lee, Ji‐Hoon Benassi, Barbara Barilà, Daniela Robert, Caroline Stamler, Jonathan S Cecconi, Francesco Fraziano, Maurizio Paull, Tanya T Filomeni, Giuseppe EMBO Rep Articles The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox‐mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox‐insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T‐cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function. John Wiley and Sons Inc. 2020-11-27 2021-01-07 /pmc/articles/PMC7788447/ /pubmed/33245190 http://dx.doi.org/10.15252/embr.202050500 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Cirotti, Claudia Rizza, Salvatore Giglio, Paola Poerio, Noemi Allega, Maria Francesca Claps, Giuseppina Pecorari, Chiara Lee, Ji‐Hoon Benassi, Barbara Barilà, Daniela Robert, Caroline Stamler, Jonathan S Cecconi, Francesco Fraziano, Maurizio Paull, Tanya T Filomeni, Giuseppe Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title | Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title_full | Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title_fullStr | Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title_full_unstemmed | Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title_short | Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress |
title_sort | redox activation of atm enhances gsnor translation to sustain mitophagy and tolerance to oxidative stress |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788447/ https://www.ncbi.nlm.nih.gov/pubmed/33245190 http://dx.doi.org/10.15252/embr.202050500 |
work_keys_str_mv | AT cirotticlaudia redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT rizzasalvatore redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT gigliopaola redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT poerionoemi redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT allegamariafrancesca redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT clapsgiuseppina redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT pecorarichiara redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT leejihoon redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT benassibarbara redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT bariladaniela redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT robertcaroline redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT stamlerjonathans redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT cecconifrancesco redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT frazianomaurizio redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT paulltanyat redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress AT filomenigiuseppe redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress |