Cargando…

Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress

The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to...

Descripción completa

Detalles Bibliográficos
Autores principales: Cirotti, Claudia, Rizza, Salvatore, Giglio, Paola, Poerio, Noemi, Allega, Maria Francesca, Claps, Giuseppina, Pecorari, Chiara, Lee, Ji‐Hoon, Benassi, Barbara, Barilà, Daniela, Robert, Caroline, Stamler, Jonathan S, Cecconi, Francesco, Fraziano, Maurizio, Paull, Tanya T, Filomeni, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788447/
https://www.ncbi.nlm.nih.gov/pubmed/33245190
http://dx.doi.org/10.15252/embr.202050500
_version_ 1783633034756489216
author Cirotti, Claudia
Rizza, Salvatore
Giglio, Paola
Poerio, Noemi
Allega, Maria Francesca
Claps, Giuseppina
Pecorari, Chiara
Lee, Ji‐Hoon
Benassi, Barbara
Barilà, Daniela
Robert, Caroline
Stamler, Jonathan S
Cecconi, Francesco
Fraziano, Maurizio
Paull, Tanya T
Filomeni, Giuseppe
author_facet Cirotti, Claudia
Rizza, Salvatore
Giglio, Paola
Poerio, Noemi
Allega, Maria Francesca
Claps, Giuseppina
Pecorari, Chiara
Lee, Ji‐Hoon
Benassi, Barbara
Barilà, Daniela
Robert, Caroline
Stamler, Jonathan S
Cecconi, Francesco
Fraziano, Maurizio
Paull, Tanya T
Filomeni, Giuseppe
author_sort Cirotti, Claudia
collection PubMed
description The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox‐mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox‐insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T‐cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.
format Online
Article
Text
id pubmed-7788447
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77884472021-01-11 Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress Cirotti, Claudia Rizza, Salvatore Giglio, Paola Poerio, Noemi Allega, Maria Francesca Claps, Giuseppina Pecorari, Chiara Lee, Ji‐Hoon Benassi, Barbara Barilà, Daniela Robert, Caroline Stamler, Jonathan S Cecconi, Francesco Fraziano, Maurizio Paull, Tanya T Filomeni, Giuseppe EMBO Rep Articles The denitrosylase S‐nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S‐nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox‐mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox‐insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T‐cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function. John Wiley and Sons Inc. 2020-11-27 2021-01-07 /pmc/articles/PMC7788447/ /pubmed/33245190 http://dx.doi.org/10.15252/embr.202050500 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Cirotti, Claudia
Rizza, Salvatore
Giglio, Paola
Poerio, Noemi
Allega, Maria Francesca
Claps, Giuseppina
Pecorari, Chiara
Lee, Ji‐Hoon
Benassi, Barbara
Barilà, Daniela
Robert, Caroline
Stamler, Jonathan S
Cecconi, Francesco
Fraziano, Maurizio
Paull, Tanya T
Filomeni, Giuseppe
Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title_full Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title_fullStr Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title_full_unstemmed Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title_short Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress
title_sort redox activation of atm enhances gsnor translation to sustain mitophagy and tolerance to oxidative stress
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788447/
https://www.ncbi.nlm.nih.gov/pubmed/33245190
http://dx.doi.org/10.15252/embr.202050500
work_keys_str_mv AT cirotticlaudia redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT rizzasalvatore redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT gigliopaola redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT poerionoemi redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT allegamariafrancesca redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT clapsgiuseppina redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT pecorarichiara redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT leejihoon redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT benassibarbara redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT bariladaniela redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT robertcaroline redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT stamlerjonathans redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT cecconifrancesco redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT frazianomaurizio redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT paulltanyat redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress
AT filomenigiuseppe redoxactivationofatmenhancesgsnortranslationtosustainmitophagyandtolerancetooxidativestress