Cargando…
Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks
The growing importance of human–machine interfaces and the rapid expansion of the internet of things (IoT) have inspired the integration of displays with sound generation systems to afford stretchable sound‐in‐display devices and thus establish human‐to‐machine connections via auditory system visual...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788580/ https://www.ncbi.nlm.nih.gov/pubmed/33437570 http://dx.doi.org/10.1002/advs.202001647 |
_version_ | 1783633056500809728 |
---|---|
author | Cho, Seungse Kang, Dong‐hee Lee, Hyejin Kim, Minsoo P. Kang, Saewon Shanker, Ravi Ko, Hyunhyub |
author_facet | Cho, Seungse Kang, Dong‐hee Lee, Hyejin Kim, Minsoo P. Kang, Saewon Shanker, Ravi Ko, Hyunhyub |
author_sort | Cho, Seungse |
collection | PubMed |
description | The growing importance of human–machine interfaces and the rapid expansion of the internet of things (IoT) have inspired the integration of displays with sound generation systems to afford stretchable sound‐in‐display devices and thus establish human‐to‐machine connections via auditory system visualization. Herein, the synchronized generation of sound and color is demonstrated for a stretchable sound‐in‐display device with electrodes of strain‐insensitive silver nanowires (AgNWs) and emissive layers of field‐induced inorganic electroluminescent (EL) phosphors. In this device, EL phosphors embedded in a dielectric elastomer actuator (DEA) emit light under alternating‐current bias, while audible sound waves are simultaneously generated via DEA actuation along with input sound signals. The electroluminescence and sound‐generation performances of the fabricated device are highly robust and reliable, being insensitive to stretch‐release cycling because of the presence of the AgNW stretchable electrodes. The presented principle of integrating light emission and acoustic systems in a single stretchable device can be further expanded to realize sound‐in‐display electronics for IoT and human–machine interface applications. |
format | Online Article Text |
id | pubmed-7788580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77885802021-01-11 Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks Cho, Seungse Kang, Dong‐hee Lee, Hyejin Kim, Minsoo P. Kang, Saewon Shanker, Ravi Ko, Hyunhyub Adv Sci (Weinh) Full Papers The growing importance of human–machine interfaces and the rapid expansion of the internet of things (IoT) have inspired the integration of displays with sound generation systems to afford stretchable sound‐in‐display devices and thus establish human‐to‐machine connections via auditory system visualization. Herein, the synchronized generation of sound and color is demonstrated for a stretchable sound‐in‐display device with electrodes of strain‐insensitive silver nanowires (AgNWs) and emissive layers of field‐induced inorganic electroluminescent (EL) phosphors. In this device, EL phosphors embedded in a dielectric elastomer actuator (DEA) emit light under alternating‐current bias, while audible sound waves are simultaneously generated via DEA actuation along with input sound signals. The electroluminescence and sound‐generation performances of the fabricated device are highly robust and reliable, being insensitive to stretch‐release cycling because of the presence of the AgNW stretchable electrodes. The presented principle of integrating light emission and acoustic systems in a single stretchable device can be further expanded to realize sound‐in‐display electronics for IoT and human–machine interface applications. John Wiley and Sons Inc. 2020-11-23 /pmc/articles/PMC7788580/ /pubmed/33437570 http://dx.doi.org/10.1002/advs.202001647 Text en © 2020 The Authors. Published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Cho, Seungse Kang, Dong‐hee Lee, Hyejin Kim, Minsoo P. Kang, Saewon Shanker, Ravi Ko, Hyunhyub Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title | Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title_full | Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title_fullStr | Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title_full_unstemmed | Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title_short | Highly Stretchable Sound‐in‐Display Electronics Based on Strain‐Insensitive Metallic Nanonetworks |
title_sort | highly stretchable sound‐in‐display electronics based on strain‐insensitive metallic nanonetworks |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788580/ https://www.ncbi.nlm.nih.gov/pubmed/33437570 http://dx.doi.org/10.1002/advs.202001647 |
work_keys_str_mv | AT choseungse highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT kangdonghee highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT leehyejin highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT kimminsoop highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT kangsaewon highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT shankerravi highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks AT kohyunhyub highlystretchablesoundindisplayelectronicsbasedonstraininsensitivemetallicnanonetworks |