Cargando…
Determining Multi‐Component Phase Diagrams with Desired Characteristics Using Active Learning
Herein, we demonstrate how to predict and experimentally validate phase diagrams for multi‐component systems from a high‐dimensional virtual space of all possible phase diagrams involving several elements based on small existing experimental data. The experimental data for bulk phases for known syst...
Autores principales: | Tian, Yuan, Yuan, Ruihao, Xue, Dezhen, Zhou, Yumei, Wang, Yunfan, Ding, Xiangdong, Sun, Jun, Lookman, Turab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788591/ https://www.ncbi.nlm.nih.gov/pubmed/33437586 http://dx.doi.org/10.1002/advs.202003165 |
Ejemplares similares
-
Accelerated Search for BaTiO(3)‐Based Ceramics with Large Energy Storage at Low Fields Using Machine Learning and Experimental Design
por: Yuan, Ruihao, et al.
Publicado: (2019) -
Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis
por: Xue, Deqing, et al.
Publicado: (2016) -
Multi-objective Optimization for Materials Discovery via Adaptive Design
por: Gopakumar, Abhijith M., et al.
Publicado: (2018) -
Adaptive Strategies for Materials Design using Uncertainties
por: Balachandran, Prasanna V., et al.
Publicado: (2016) -
Accelerated search for materials with targeted properties by adaptive design
por: Xue, Dezhen, et al.
Publicado: (2016)