Cargando…
Non-idempotent Intersection Types in Logical Form
Intersection types are an essential tool in the analysis of operational and denotational properties of lambda-terms and functional programs. Among them, non-idempotent intersection types provide precise quantitative information about the evaluation of terms and programs. However, unlike simple or se...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788603/ http://dx.doi.org/10.1007/978-3-030-45231-5_11 |
Sumario: | Intersection types are an essential tool in the analysis of operational and denotational properties of lambda-terms and functional programs. Among them, non-idempotent intersection types provide precise quantitative information about the evaluation of terms and programs. However, unlike simple or second-order types, intersection types cannot be considered as a logical system because the application rule (or the intersection rule, depending on the presentation of the system) involves a condition stipulating that the proofs of premises must have the same structure. Using earlier work introducing an indexed version of Linear Logic, we show that non-idempotent typing can be given a logical form in a system where formulas represent hereditarily indexed families of intersection types. |
---|