Cargando…

General Supervised Learning as Change Propagation with Delta Lenses

Delta lenses are an established mathematical framework for modelling and designing bidirectional model transformations (Bx). Following the recent observations by Fong et al, the paper extends the delta lens framework with a a new ingredient: learning over a parameterized space of model transformatio...

Descripción completa

Detalles Bibliográficos
Autor principal: Diskin, Zinovy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788614/
http://dx.doi.org/10.1007/978-3-030-45231-5_10
Descripción
Sumario:Delta lenses are an established mathematical framework for modelling and designing bidirectional model transformations (Bx). Following the recent observations by Fong et al, the paper extends the delta lens framework with a a new ingredient: learning over a parameterized space of model transformations seen as functors. We will define a notion of an asymmetric learning delta lens with amendment (ala-lens), and show how ala-lenses can be organized into a symmetric monoidal (sm) category. We also show that sequential and parallel composition of well-behaved (wb) ala-lenses are also wb so that wb ala-lenses constitute a full sm-subcategory of ala-lenses.