Cargando…
Drug-induced cell viability prediction from LINCS-L1000 through WRFEN-XGBoost algorithm
BACKGROUND: Predicting the drug response of the cancer diseases through the cellular perturbation signatures under the action of specific compounds is very important in personalized medicine. In the process of testing drug responses to the cancer, traditional experimental methods have been greatly h...
Autores principales: | Lu, Jiaxing, Chen, Ming, Qin, Yufang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788947/ https://www.ncbi.nlm.nih.gov/pubmed/33407085 http://dx.doi.org/10.1186/s12859-020-03949-w |
Ejemplares similares
-
L1000CDS(2): LINCS L1000 characteristic direction signatures search engine
por: Duan, Qiaonan, et al.
Publicado: (2016) -
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019) -
metaLINCS: an R package for meta-level analysis of LINCS L1000 drug signatures using stratified connectivity mapping
por: Kwee, Ivo, et al.
Publicado: (2022) -
A Bayesian approach to accurate and robust signature detection on LINCS L1000 data
por: Qiu, Yue, et al.
Publicado: (2020) -
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022)