Cargando…

A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data

BACKGROUND: The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was designed to identify methylated gene markers with prognostic potential for GC. METHODS: Five datasets containing gene expression and methylation profiles from GC samples were collected from the...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Dan, Yang, QingLing, Wang, HaiBo, Tan, Mao, Zou, YanLei, Liu, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789242/
https://www.ncbi.nlm.nih.gov/pubmed/33407483
http://dx.doi.org/10.1186/s12920-020-00856-0
_version_ 1783633197878214656
author Luo, Dan
Yang, QingLing
Wang, HaiBo
Tan, Mao
Zou, YanLei
Liu, Jian
author_facet Luo, Dan
Yang, QingLing
Wang, HaiBo
Tan, Mao
Zou, YanLei
Liu, Jian
author_sort Luo, Dan
collection PubMed
description BACKGROUND: The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was designed to identify methylated gene markers with prognostic potential for GC. METHODS: Five datasets containing gene expression and methylation profiles from GC samples were collected from the GEO database, and subjected to meta-analysis. All five datasets were subjected to quality control and then differentially expressed genes (DEGs) and differentially expressed methylation genes (DEMGs) were selected using MetaDE. Correlations between gene expression and methylation status were analysed using Pearson coefficient correlation. Then, enrichment analyses were conducted to identify signature genes that were significantly different at both the gene expression and methylation levels. Cox regression analyses were performed to identify clinical factors and these were combined with the signature genes to create a prognosis-related predictive model. This model was then evaluated for predictive accuracy and then validated using a validation dataset. RESULTS: This study identified 1565 DEGs and 3754 DEMGs in total. Of these, 369 were differentially expressed at both the gene and methylation levels. We identified 12 signature genes including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5 which were combined with the clinical data to produce a novel prognostic model for GC. This model could effectively split GC patients into two groups, high- and low-risk with these observations being confirmed in the validation dataset. CONCLUSION: The differential methylation of the 12 signature genes, including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5, identified in this study may help to produce a functional predictive model for evaluating GC prognosis in clinical samples.
format Online
Article
Text
id pubmed-7789242
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-77892422021-01-07 A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data Luo, Dan Yang, QingLing Wang, HaiBo Tan, Mao Zou, YanLei Liu, Jian BMC Med Genomics Research Article BACKGROUND: The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was designed to identify methylated gene markers with prognostic potential for GC. METHODS: Five datasets containing gene expression and methylation profiles from GC samples were collected from the GEO database, and subjected to meta-analysis. All five datasets were subjected to quality control and then differentially expressed genes (DEGs) and differentially expressed methylation genes (DEMGs) were selected using MetaDE. Correlations between gene expression and methylation status were analysed using Pearson coefficient correlation. Then, enrichment analyses were conducted to identify signature genes that were significantly different at both the gene expression and methylation levels. Cox regression analyses were performed to identify clinical factors and these were combined with the signature genes to create a prognosis-related predictive model. This model was then evaluated for predictive accuracy and then validated using a validation dataset. RESULTS: This study identified 1565 DEGs and 3754 DEMGs in total. Of these, 369 were differentially expressed at both the gene and methylation levels. We identified 12 signature genes including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5 which were combined with the clinical data to produce a novel prognostic model for GC. This model could effectively split GC patients into two groups, high- and low-risk with these observations being confirmed in the validation dataset. CONCLUSION: The differential methylation of the 12 signature genes, including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5, identified in this study may help to produce a functional predictive model for evaluating GC prognosis in clinical samples. BioMed Central 2021-01-06 /pmc/articles/PMC7789242/ /pubmed/33407483 http://dx.doi.org/10.1186/s12920-020-00856-0 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Luo, Dan
Yang, QingLing
Wang, HaiBo
Tan, Mao
Zou, YanLei
Liu, Jian
A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title_full A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title_fullStr A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title_full_unstemmed A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title_short A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
title_sort predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789242/
https://www.ncbi.nlm.nih.gov/pubmed/33407483
http://dx.doi.org/10.1186/s12920-020-00856-0
work_keys_str_mv AT luodan apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT yangqingling apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT wanghaibo apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT tanmao apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT zouyanlei apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT liujian apredictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT luodan predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT yangqingling predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT wanghaibo predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT tanmao predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT zouyanlei predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata
AT liujian predictivemodelforassessingprognosticrisksingastriccancerpatientsusinggeneexpressionandmethylationdata