Cargando…

Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma

BACKGROUND: Non-Hodgkin’s lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, vari...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qiangqiang, Sun, Xiaoying, Wu, Bin, Shang, Yinghui, Huang, Xueyuan, Dong, Hang, Liu, Haiting, Chen, Wansong, Gui, Rong, Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789287/
https://www.ncbi.nlm.nih.gov/pubmed/33407527
http://dx.doi.org/10.1186/s12951-020-00738-8
Descripción
Sumario:BACKGROUND: Non-Hodgkin’s lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, various patients continue to suffer from drug resistance or recurrence. Chinese medicine has long been used in the treatment of malignant tumors. Therefore, we constructed a low pH value sensitivity drug delivery system based on the cancer cell membrane modified mesoporous silica nanoparticles loaded with traditional Chinese medicine, which can reduce systemic toxicity and improve the therapeutic effect for the targeted drug delivery of tumor cells. RESULTS: Accordingly, this study put forward the construction of a nano-platform based on mesoporous silica nanoparticles (MSNs) loaded with the traditional Chinese medicine isoimperatorin (ISOIM), which was camouflaged by the cancer cell membrane (CCM) called CCM@MSNs-ISOIM. The proposed nano-platform has characteristics of immune escape, anti-phagocytosis, high drug loading rate, low pH value sensitivity, good biocompatibility and active targeting of the tumor site, blocking the lymphoma cell cycle and promoting mitochondrial-mediated apoptosis. CONCLUSIONS: Furthermore, this study provides a theoretical basis in finding novel clinical treatments for lymphoma.