Cargando…

Re-evaluation of the comparative effectiveness of bootstrap-based optimism correction methods in the development of multivariable clinical prediction models

BACKGROUND: Multivariable prediction models are important statistical tools for providing synthetic diagnosis and prognostic algorithms based on patients’ multiple characteristics. Their apparent measures for predictive accuracy usually have overestimation biases (known as ‘optimism’) relative to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Iba, Katsuhiro, Shinozaki, Tomohiro, Maruo, Kazushi, Noma, Hisashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789544/
https://www.ncbi.nlm.nih.gov/pubmed/33413132
http://dx.doi.org/10.1186/s12874-020-01201-w
Descripción
Sumario:BACKGROUND: Multivariable prediction models are important statistical tools for providing synthetic diagnosis and prognostic algorithms based on patients’ multiple characteristics. Their apparent measures for predictive accuracy usually have overestimation biases (known as ‘optimism’) relative to the actual performances for external populations. Existing statistical evidence and guidelines suggest that three bootstrap-based bias correction methods are preferable in practice, namely Harrell’s bias correction and the .632 and .632+ estimators. Although Harrell’s method has been widely adopted in clinical studies, simulation-based evidence indicates that the .632+ estimator may perform better than the other two methods. However, these methods’ actual comparative effectiveness is still unclear due to limited numerical evidence. METHODS: We conducted extensive simulation studies to compare the effectiveness of these three bootstrapping methods, particularly using various model building strategies: conventional logistic regression, stepwise variable selections, Firth’s penalized likelihood method, ridge, lasso, and elastic-net regression. We generated the simulation data based on the Global Utilization of Streptokinase and Tissue plasminogen activator for Occluded coronary arteries (GUSTO-I) trial Western dataset and considered how event per variable, event fraction, number of candidate predictors, and the regression coefficients of the predictors impacted the performances. The internal validity of C-statistics was evaluated. RESULTS: Under relatively large sample settings (roughly, events per variable ≥ 10), the three bootstrap-based methods were comparable and performed well. However, all three methods had biases under small sample settings, and the directions and sizes of biases were inconsistent. In general, Harrell’s and .632 methods had overestimation biases when event fraction become lager. Besides, .632+ method had a slight underestimation bias when event fraction was very small. Although the bias of the .632+ estimator was relatively small, its root mean squared error (RMSE) was comparable or sometimes larger than those of the other two methods, especially for the regularized estimation methods. CONCLUSIONS: In general, the three bootstrap estimators were comparable, but the .632+ estimator performed relatively well under small sample settings, except when the regularized estimation methods are adopted. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-020-01201-w.