Cargando…
Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis
BACKGROUND: The prevention of surgery-induced intraarticular fibrosis remains a challenge following orthopedic surgery. Homoharringtonine (HHT) has been reported to have positive effects in preventing various kinds of fibrosis. However, little is known regarding its effect as well as the potential m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789651/ https://www.ncbi.nlm.nih.gov/pubmed/33407698 http://dx.doi.org/10.1186/s13018-020-02150-2 |
_version_ | 1783633287181238272 |
---|---|
author | Sun, Yu Dai, Jihang Jiao, Rui Jiang, Qing Wang, Jingcheng |
author_facet | Sun, Yu Dai, Jihang Jiao, Rui Jiang, Qing Wang, Jingcheng |
author_sort | Sun, Yu |
collection | PubMed |
description | BACKGROUND: The prevention of surgery-induced intraarticular fibrosis remains a challenge following orthopedic surgery. Homoharringtonine (HHT) has been reported to have positive effects in preventing various kinds of fibrosis. However, little is known regarding its effect as well as the potential mechanism of HHT in preventing surgery-induced intraarticular fibrosis. METHODS: Various concentrations of HHTs were locally applied in vivo to reduce knee intraarticular fibrosis in rabbits. Histological macroscopic assessments such as hematoxylin and eosin (HE) staining, Masson’s trichrome staining, and Picric-sirius red polarized light were used to evaluate the effect of HHT in reducing intraarticular fibrosis. CCK-8, cell cycle assay, and EdU incorporation assay were used in vitro to detect HHT’s effect on inhibiting fibroblast viability and proliferation. The effect of HHT on fibroblast differentiation, extracellular matrix production, and apoptosis were evaluated by western blot, flow cytometry, immunofluorescent staining, and TUNEL analysis. Moreover, the expressions of PI3K/AKT/mTOR signaling pathway were detected. RESULTS: The results demonstrated that HHT could reduce the formation of intraarticular fibrosis. HHT was also found to induce fibroblast apoptotic cell death in a dose- and time-dependent manner in vitro. Moreover, HHT could effectively inhibit the production of the extracellular matrix secreted by fibroblasts and inhibited the expression of p-PI3K, p-AKT, and p-mTOR in a dose-dependent manner. After treating with insulin-like growth factor-1 (IGF-1), an activator of the PI3K/AKT axis, the expressions of pro-apoptosis-related proteins were decreased, and the fibroblast apoptosis rate was also inhibited. CONCLUSIONS: In conclusion, this study demonstrated that HHT could reduce the formation of intraarticular fibrosis through the inhibition of fibroblast proliferation, extracellular matrix production, and the induction of fibroblast apoptotic cell death. Furthermore, its potential mechanism may be through the suppression of the PI3K/AKT/mTOR signaling pathway. |
format | Online Article Text |
id | pubmed-7789651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-77896512021-01-07 Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis Sun, Yu Dai, Jihang Jiao, Rui Jiang, Qing Wang, Jingcheng J Orthop Surg Res Research Article BACKGROUND: The prevention of surgery-induced intraarticular fibrosis remains a challenge following orthopedic surgery. Homoharringtonine (HHT) has been reported to have positive effects in preventing various kinds of fibrosis. However, little is known regarding its effect as well as the potential mechanism of HHT in preventing surgery-induced intraarticular fibrosis. METHODS: Various concentrations of HHTs were locally applied in vivo to reduce knee intraarticular fibrosis in rabbits. Histological macroscopic assessments such as hematoxylin and eosin (HE) staining, Masson’s trichrome staining, and Picric-sirius red polarized light were used to evaluate the effect of HHT in reducing intraarticular fibrosis. CCK-8, cell cycle assay, and EdU incorporation assay were used in vitro to detect HHT’s effect on inhibiting fibroblast viability and proliferation. The effect of HHT on fibroblast differentiation, extracellular matrix production, and apoptosis were evaluated by western blot, flow cytometry, immunofluorescent staining, and TUNEL analysis. Moreover, the expressions of PI3K/AKT/mTOR signaling pathway were detected. RESULTS: The results demonstrated that HHT could reduce the formation of intraarticular fibrosis. HHT was also found to induce fibroblast apoptotic cell death in a dose- and time-dependent manner in vitro. Moreover, HHT could effectively inhibit the production of the extracellular matrix secreted by fibroblasts and inhibited the expression of p-PI3K, p-AKT, and p-mTOR in a dose-dependent manner. After treating with insulin-like growth factor-1 (IGF-1), an activator of the PI3K/AKT axis, the expressions of pro-apoptosis-related proteins were decreased, and the fibroblast apoptosis rate was also inhibited. CONCLUSIONS: In conclusion, this study demonstrated that HHT could reduce the formation of intraarticular fibrosis through the inhibition of fibroblast proliferation, extracellular matrix production, and the induction of fibroblast apoptotic cell death. Furthermore, its potential mechanism may be through the suppression of the PI3K/AKT/mTOR signaling pathway. BioMed Central 2021-01-06 /pmc/articles/PMC7789651/ /pubmed/33407698 http://dx.doi.org/10.1186/s13018-020-02150-2 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Sun, Yu Dai, Jihang Jiao, Rui Jiang, Qing Wang, Jingcheng Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title | Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title_full | Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title_fullStr | Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title_full_unstemmed | Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title_short | Homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via PI3K/AKT/mTOR pathway-mediated apoptosis |
title_sort | homoharringtonine inhibits fibroblasts proliferation, extracellular matrix production and reduces surgery-induced knee arthrofibrosis via pi3k/akt/mtor pathway-mediated apoptosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789651/ https://www.ncbi.nlm.nih.gov/pubmed/33407698 http://dx.doi.org/10.1186/s13018-020-02150-2 |
work_keys_str_mv | AT sunyu homoharringtonineinhibitsfibroblastsproliferationextracellularmatrixproductionandreducessurgeryinducedkneearthrofibrosisviapi3kaktmtorpathwaymediatedapoptosis AT daijihang homoharringtonineinhibitsfibroblastsproliferationextracellularmatrixproductionandreducessurgeryinducedkneearthrofibrosisviapi3kaktmtorpathwaymediatedapoptosis AT jiaorui homoharringtonineinhibitsfibroblastsproliferationextracellularmatrixproductionandreducessurgeryinducedkneearthrofibrosisviapi3kaktmtorpathwaymediatedapoptosis AT jiangqing homoharringtonineinhibitsfibroblastsproliferationextracellularmatrixproductionandreducessurgeryinducedkneearthrofibrosisviapi3kaktmtorpathwaymediatedapoptosis AT wangjingcheng homoharringtonineinhibitsfibroblastsproliferationextracellularmatrixproductionandreducessurgeryinducedkneearthrofibrosisviapi3kaktmtorpathwaymediatedapoptosis |