Cargando…
IL-17C contributes to NTHi-induced inflammation and lung damage in experimental COPD and is present in sputum during acute exacerbations
Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytoki...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790230/ https://www.ncbi.nlm.nih.gov/pubmed/33411748 http://dx.doi.org/10.1371/journal.pone.0243484 |
Sumario: | Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytokine interleukin-17C (IL-17C) is expressed by airway epithelial cells and regulates neutrophilic chemotaxis. Here, we explored the function of IL-17C in NTHi- and cigarette smoke (CS)-induced models of COPD. Neutrophilic inflammation and tissue destruction were decreased in lungs of IL-17C-deficient mice (Il-17c(-/-)) chronically exposed to NTHi. Numbers of pulmonary neutrophils were decreased in Il-17c(-/-) mice after acute exposure to the combination of NTHi and CS. However, Il-17c(-/-) mice were not protected from CS-induced lung inflammation. In a preliminary patient study, we show that IL-17C is present in sputum samples obtained during AECOPD and associates with disease severity. Concentrations of IL-17C were significantly increased during advanced COPD (GOLD III/IV) compared to moderate COPD (GOLD I/II). Concentrations of IL-17A and IL-17E did not associate with disease severity. Our data suggest that IL-17C promotes harmful pulmonary inflammation triggered by bacteria in COPD. |
---|