Cargando…
A novel cross-validation strategy for artificial neural networks using distributed-lag environmental factors
In recent years, machine learning methods have been applied to various prediction scenarios in time-series data. However, some processing procedures such as cross-validation (CV) that rearrange the order of the longitudinal data might ruin the seriality and lead to a potentially biased outcome. Rega...
Autores principales: | Guo, Chao-Yu, Liu, Tse-Wei, Chen, Yi-Hau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790373/ https://www.ncbi.nlm.nih.gov/pubmed/33411794 http://dx.doi.org/10.1371/journal.pone.0244094 |
Ejemplares similares
-
Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
A Novel Evaluation Strategy to Artificial Neural Network Model Based on Bionics
por: Tian, Sen, et al.
Publicado: (2021) -
Modeling exposure–lag–response associations with distributed lag non-linear models
por: Gasparrini, Antonio
Publicado: (2014) -
Distributed lag non-linear models
por: Gasparrini, A, et al.
Publicado: (2010) -
A novel model for predicting fatty liver disease by means of an
artificial neural network
por: Chen, Yi-Shu, et al.
Publicado: (2020)