Cargando…
The use of health geography modeling to understand early dispersion of COVID-19 in São Paulo, Brazil
Public health policies to contain the spread of COVID-19 rely mainly on non-pharmacological measures. Those measures, especially social distancing, are a challenge for developing countries, such as Brazil. In São Paulo, the most populous state in Brazil (45 million inhabitants), most COVID-19 cases...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790416/ https://www.ncbi.nlm.nih.gov/pubmed/33411768 http://dx.doi.org/10.1371/journal.pone.0245051 |
Sumario: | Public health policies to contain the spread of COVID-19 rely mainly on non-pharmacological measures. Those measures, especially social distancing, are a challenge for developing countries, such as Brazil. In São Paulo, the most populous state in Brazil (45 million inhabitants), most COVID-19 cases up to April 18th were reported in the Capital and metropolitan area. However, the inner municipalities, where 20 million people live, are also at risk. As governmental authorities discuss the loosening of measures for restricting population mobility, it is urgent to analyze the routes of dispersion of COVID-19 in São Paulo territory. We hypothesize that urban hierarchy is the main responsible for the disease spreading, and we identify the hotspots and the main routes of virus movement from the metropolis to the inner state. In this ecological study, we use geographic models of population mobility to check for patterns for the spread of SARS-CoV-2 infection. We identify two patterns based on surveillance data: one by contiguous diffusion from the capital metropolitan area, and the other hierarchical with long-distance spread through major highways that connects São Paulo city with cities of regional relevance. This knowledge can provide real-time responses to support public health strategies, optimizing the use of resources in order to minimize disease impact on population and economy. |
---|