Cargando…
FLIM data analysis based on Laguerre polynomial decomposition and machine-learning
Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently being recognized, especially in biological studies. However, FLIM does not directly measure the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances have to be estimated...
Autores principales: | Guo, Shuxia, Silge, Anja, Bae, Hyeonsoo, Tolstik, Tatiana, Meyer, Tobias, Matziolis, Georg, Schmitt, Michael, Popp, Jürgen, Bocklitz, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790506/ https://www.ncbi.nlm.nih.gov/pubmed/33415850 http://dx.doi.org/10.1117/1.JBO.26.2.022909 |
Ejemplares similares
-
Deep learning in photoacoustic tomography: current approaches and future directions
por: Hauptmann, Andreas, et al.
Publicado: (2020) -
Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells
por: Canavesi, Cristina, et al.
Publicado: (2020) -
Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy
por: Fredriksson, Ingemar, et al.
Publicado: (2020) -
Applications of compressive sensing in spatial frequency domain imaging
por: Mellors, Ben O. L., et al.
Publicado: (2020) -
Quantifying the effects of biopsy fixation and staining panel design on automatic instance segmentation of immune cells in human lupus nephritis
por: Durkee, Madeleine S., et al.
Publicado: (2021)