Cargando…
Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish
Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large pred...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790632/ https://www.ncbi.nlm.nih.gov/pubmed/33437435 http://dx.doi.org/10.1002/ece3.7051 |
_version_ | 1783633467975663616 |
---|---|
author | Howell, Kaitlyn J. Beston, Shannon M. Stearns, Sara Walsh, Matthew R. |
author_facet | Howell, Kaitlyn J. Beston, Shannon M. Stearns, Sara Walsh, Matthew R. |
author_sort | Howell, Kaitlyn J. |
collection | PubMed |
description | Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities. |
format | Online Article Text |
id | pubmed-7790632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77906322021-01-11 Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish Howell, Kaitlyn J. Beston, Shannon M. Stearns, Sara Walsh, Matthew R. Ecol Evol Original Research Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities. John Wiley and Sons Inc. 2020-11-22 /pmc/articles/PMC7790632/ /pubmed/33437435 http://dx.doi.org/10.1002/ece3.7051 Text en © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Howell, Kaitlyn J. Beston, Shannon M. Stearns, Sara Walsh, Matthew R. Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title | Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title_full | Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title_fullStr | Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title_full_unstemmed | Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title_short | Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish |
title_sort | coordinated evolution of brain size, structure, and eye size in trinidadian killifish |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790632/ https://www.ncbi.nlm.nih.gov/pubmed/33437435 http://dx.doi.org/10.1002/ece3.7051 |
work_keys_str_mv | AT howellkaitlynj coordinatedevolutionofbrainsizestructureandeyesizeintrinidadiankillifish AT bestonshannonm coordinatedevolutionofbrainsizestructureandeyesizeintrinidadiankillifish AT stearnssara coordinatedevolutionofbrainsizestructureandeyesizeintrinidadiankillifish AT walshmatthewr coordinatedevolutionofbrainsizestructureandeyesizeintrinidadiankillifish |