Cargando…
Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation
1. Ecometrics is the study of community‐level functional trait–environment relationships. We use ecometric analyses to estimate paleoenvironment and to investigate community‐level functional changes through time. 2. We evaluate four methods that have been used or have the potential to be used in eco...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790641/ https://www.ncbi.nlm.nih.gov/pubmed/33437453 http://dx.doi.org/10.1002/ece3.7081 |
_version_ | 1783633470571937792 |
---|---|
author | Short, Rachel A. Pinson, Katherine Lawing, A. Michelle |
author_facet | Short, Rachel A. Pinson, Katherine Lawing, A. Michelle |
author_sort | Short, Rachel A. |
collection | PubMed |
description | 1. Ecometrics is the study of community‐level functional trait–environment relationships. We use ecometric analyses to estimate paleoenvironment and to investigate community‐level functional changes through time. 2. We evaluate four methods that have been used or have the potential to be used in ecometric analyses for estimating paleoenvironment to determine whether there have been systematic differences in paleoenvironmental estimation due to choice of the estimation method. Specifically, we evaluated linear regression, polynomial regression, nearest neighbor, and maximum‐likelihood methods to explore the predictive ability of the relationship for a well‐known ecometric dataset of mammalian herbivore hypsodonty metrics (molar tooth crown to root height ratio) and annual precipitation. Each method was applied to 43 Pleistocene fossil sites and compared to annual precipitation from global climate models. Sites were categorized as glacial or interglacial, and paleoprecipitation estimates were compared to the appropriate model. 3. Estimation methods produce results that are highly correlated with log precipitation and estimates from the other methods (p < 0.001). Differences between estimated precipitation and observed precipitation are not significantly different across the four methods, but maximum likelihood produces the most accurate estimates of precipitation. When applied to paleontological sites, paleoprecipitation estimates align more closely with glacial global climate models than with interglacial models regardless of the age of the site. 4. Each method has constraints that are important to consider when designing ecometric analyses to avoid misinterpretations when ecometric relationships are applied to the paleontological record. We show interglacial fauna estimates of paleoprecipitation more closely match glacial global climate models. This is likely because of the anthropogenic effects on community reassembly in the Holocene. |
format | Online Article Text |
id | pubmed-7790641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77906412021-01-11 Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation Short, Rachel A. Pinson, Katherine Lawing, A. Michelle Ecol Evol Original Research 1. Ecometrics is the study of community‐level functional trait–environment relationships. We use ecometric analyses to estimate paleoenvironment and to investigate community‐level functional changes through time. 2. We evaluate four methods that have been used or have the potential to be used in ecometric analyses for estimating paleoenvironment to determine whether there have been systematic differences in paleoenvironmental estimation due to choice of the estimation method. Specifically, we evaluated linear regression, polynomial regression, nearest neighbor, and maximum‐likelihood methods to explore the predictive ability of the relationship for a well‐known ecometric dataset of mammalian herbivore hypsodonty metrics (molar tooth crown to root height ratio) and annual precipitation. Each method was applied to 43 Pleistocene fossil sites and compared to annual precipitation from global climate models. Sites were categorized as glacial or interglacial, and paleoprecipitation estimates were compared to the appropriate model. 3. Estimation methods produce results that are highly correlated with log precipitation and estimates from the other methods (p < 0.001). Differences between estimated precipitation and observed precipitation are not significantly different across the four methods, but maximum likelihood produces the most accurate estimates of precipitation. When applied to paleontological sites, paleoprecipitation estimates align more closely with glacial global climate models than with interglacial models regardless of the age of the site. 4. Each method has constraints that are important to consider when designing ecometric analyses to avoid misinterpretations when ecometric relationships are applied to the paleontological record. We show interglacial fauna estimates of paleoprecipitation more closely match glacial global climate models. This is likely because of the anthropogenic effects on community reassembly in the Holocene. John Wiley and Sons Inc. 2020-12-04 /pmc/articles/PMC7790641/ /pubmed/33437453 http://dx.doi.org/10.1002/ece3.7081 Text en © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Short, Rachel A. Pinson, Katherine Lawing, A. Michelle Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title | Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title_full | Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title_fullStr | Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title_full_unstemmed | Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title_short | Comparison of environmental inference approaches for ecometric analyses: Using hypsodonty to estimate precipitation |
title_sort | comparison of environmental inference approaches for ecometric analyses: using hypsodonty to estimate precipitation |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790641/ https://www.ncbi.nlm.nih.gov/pubmed/33437453 http://dx.doi.org/10.1002/ece3.7081 |
work_keys_str_mv | AT shortrachela comparisonofenvironmentalinferenceapproachesforecometricanalysesusinghypsodontytoestimateprecipitation AT pinsonkatherine comparisonofenvironmentalinferenceapproachesforecometricanalysesusinghypsodontytoestimateprecipitation AT lawingamichelle comparisonofenvironmentalinferenceapproachesforecometricanalysesusinghypsodontytoestimateprecipitation |