Cargando…

Facultative mutualisms: A double‐edged sword for foundation species in the face of anthropogenic global change

Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is caus...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Heide, Tjisse, Angelini, Christine, de Fouw, Jimmy, Eklöf, Johan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790659/
https://www.ncbi.nlm.nih.gov/pubmed/33437413
http://dx.doi.org/10.1002/ece3.7044
Descripción
Sumario:Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is causing rapid declines of foundation species‐structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context‐dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real‐world examples, to propose that facultative mutualisms may pose a double‐edged sword for foundation species. We suggest that by amplifying self‐facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species’ resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species‐structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.