Cargando…
Accurately Differentiating Between Patients With COVID-19, Patients With Other Viral Infections, and Healthy Individuals: Multimodal Late Fusion Learning Approach
BACKGROUND: Effectively identifying patients with COVID-19 using nonpolymerase chain reaction biomedical data is critical for achieving optimal clinical outcomes. Currently, there is a lack of comprehensive understanding in various biomedical features and appropriate analytical approaches for enabli...
Autores principales: | Xu, Ming, Ouyang, Liu, Han, Lei, Sun, Kai, Yu, Tingting, Li, Qian, Tian, Hua, Safarnejad, Lida, Zhang, Hengdong, Gao, Yue, Bao, Forrest Sheng, Chen, Yuanfang, Robinson, Patrick, Ge, Yaorong, Zhu, Baoli, Liu, Jie, Chen, Shi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790733/ https://www.ncbi.nlm.nih.gov/pubmed/33404516 http://dx.doi.org/10.2196/25535 |
Ejemplares similares
-
A Multimodality Machine Learning Approach to Differentiate Severe and Nonsevere COVID-19: Model Development and Validation
por: Chen, Yuanfang, et al.
Publicado: (2021) -
Identifying Influential Factors in the Discussion Dynamics of Emerging Health Issues on Social Media: Computational Study
por: Safarnejad, Lida, et al.
Publicado: (2020) -
Comparación de las estructuras de difusión de información errónea y verídica en las redes sociales durante una emergencia de salud pública(*)
por: Safarnejad, Lida, et al.
Publicado: (2021) -
A Multimodal Score Accurately Classifies Fontan Failure and Late Mortality in Adult Fontan Patients
por: Kramer, Peter, et al.
Publicado: (2022) -
Analysis of Polymorphisms Associated with Base Excision Repair in Patients Susceptible and Resistant to Noise-Induced Hearing Loss
por: Ding, Enmin, et al.
Publicado: (2019)