Cargando…
Ultra-low-loss on-chip zero-index materials
Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended sup...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791033/ https://www.ncbi.nlm.nih.gov/pubmed/33414367 http://dx.doi.org/10.1038/s41377-020-00436-y |
_version_ | 1783633525917876224 |
---|---|
author | Dong, Tian Liang, Jiujiu Camayd-Muñoz, Sarah Liu, Yueyang Tang, Haoning Kita, Shota Chen, Peipei Wu, Xiaojun Chu, Weiguo Mazur, Eric Li, Yang |
author_facet | Dong, Tian Liang, Jiujiu Camayd-Muñoz, Sarah Liu, Yueyang Tang, Haoning Kita, Shota Chen, Peipei Wu, Xiaojun Chu, Weiguo Mazur, Eric Li, Yang |
author_sort | Dong, Tian |
collection | PubMed |
description | Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics. |
format | Online Article Text |
id | pubmed-7791033 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77910332021-01-15 Ultra-low-loss on-chip zero-index materials Dong, Tian Liang, Jiujiu Camayd-Muñoz, Sarah Liu, Yueyang Tang, Haoning Kita, Shota Chen, Peipei Wu, Xiaojun Chu, Weiguo Mazur, Eric Li, Yang Light Sci Appl Article Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics. Nature Publishing Group UK 2021-01-07 /pmc/articles/PMC7791033/ /pubmed/33414367 http://dx.doi.org/10.1038/s41377-020-00436-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Dong, Tian Liang, Jiujiu Camayd-Muñoz, Sarah Liu, Yueyang Tang, Haoning Kita, Shota Chen, Peipei Wu, Xiaojun Chu, Weiguo Mazur, Eric Li, Yang Ultra-low-loss on-chip zero-index materials |
title | Ultra-low-loss on-chip zero-index materials |
title_full | Ultra-low-loss on-chip zero-index materials |
title_fullStr | Ultra-low-loss on-chip zero-index materials |
title_full_unstemmed | Ultra-low-loss on-chip zero-index materials |
title_short | Ultra-low-loss on-chip zero-index materials |
title_sort | ultra-low-loss on-chip zero-index materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791033/ https://www.ncbi.nlm.nih.gov/pubmed/33414367 http://dx.doi.org/10.1038/s41377-020-00436-y |
work_keys_str_mv | AT dongtian ultralowlossonchipzeroindexmaterials AT liangjiujiu ultralowlossonchipzeroindexmaterials AT camaydmunozsarah ultralowlossonchipzeroindexmaterials AT liuyueyang ultralowlossonchipzeroindexmaterials AT tanghaoning ultralowlossonchipzeroindexmaterials AT kitashota ultralowlossonchipzeroindexmaterials AT chenpeipei ultralowlossonchipzeroindexmaterials AT wuxiaojun ultralowlossonchipzeroindexmaterials AT chuweiguo ultralowlossonchipzeroindexmaterials AT mazureric ultralowlossonchipzeroindexmaterials AT liyang ultralowlossonchipzeroindexmaterials |