Cargando…

Ultra-low-loss on-chip zero-index materials

Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Tian, Liang, Jiujiu, Camayd-Muñoz, Sarah, Liu, Yueyang, Tang, Haoning, Kita, Shota, Chen, Peipei, Wu, Xiaojun, Chu, Weiguo, Mazur, Eric, Li, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791033/
https://www.ncbi.nlm.nih.gov/pubmed/33414367
http://dx.doi.org/10.1038/s41377-020-00436-y
_version_ 1783633525917876224
author Dong, Tian
Liang, Jiujiu
Camayd-Muñoz, Sarah
Liu, Yueyang
Tang, Haoning
Kita, Shota
Chen, Peipei
Wu, Xiaojun
Chu, Weiguo
Mazur, Eric
Li, Yang
author_facet Dong, Tian
Liang, Jiujiu
Camayd-Muñoz, Sarah
Liu, Yueyang
Tang, Haoning
Kita, Shota
Chen, Peipei
Wu, Xiaojun
Chu, Weiguo
Mazur, Eric
Li, Yang
author_sort Dong, Tian
collection PubMed
description Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics.
format Online
Article
Text
id pubmed-7791033
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77910332021-01-15 Ultra-low-loss on-chip zero-index materials Dong, Tian Liang, Jiujiu Camayd-Muñoz, Sarah Liu, Yueyang Tang, Haoning Kita, Shota Chen, Peipei Wu, Xiaojun Chu, Weiguo Mazur, Eric Li, Yang Light Sci Appl Article Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics. Nature Publishing Group UK 2021-01-07 /pmc/articles/PMC7791033/ /pubmed/33414367 http://dx.doi.org/10.1038/s41377-020-00436-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Dong, Tian
Liang, Jiujiu
Camayd-Muñoz, Sarah
Liu, Yueyang
Tang, Haoning
Kita, Shota
Chen, Peipei
Wu, Xiaojun
Chu, Weiguo
Mazur, Eric
Li, Yang
Ultra-low-loss on-chip zero-index materials
title Ultra-low-loss on-chip zero-index materials
title_full Ultra-low-loss on-chip zero-index materials
title_fullStr Ultra-low-loss on-chip zero-index materials
title_full_unstemmed Ultra-low-loss on-chip zero-index materials
title_short Ultra-low-loss on-chip zero-index materials
title_sort ultra-low-loss on-chip zero-index materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791033/
https://www.ncbi.nlm.nih.gov/pubmed/33414367
http://dx.doi.org/10.1038/s41377-020-00436-y
work_keys_str_mv AT dongtian ultralowlossonchipzeroindexmaterials
AT liangjiujiu ultralowlossonchipzeroindexmaterials
AT camaydmunozsarah ultralowlossonchipzeroindexmaterials
AT liuyueyang ultralowlossonchipzeroindexmaterials
AT tanghaoning ultralowlossonchipzeroindexmaterials
AT kitashota ultralowlossonchipzeroindexmaterials
AT chenpeipei ultralowlossonchipzeroindexmaterials
AT wuxiaojun ultralowlossonchipzeroindexmaterials
AT chuweiguo ultralowlossonchipzeroindexmaterials
AT mazureric ultralowlossonchipzeroindexmaterials
AT liyang ultralowlossonchipzeroindexmaterials