Cargando…

STAT1-induced regulation of lncRNA ZFPM2-AS1 predicts poor prognosis and contributes to hepatocellular carcinoma progression via the miR-653/GOLM1 axis

Long noncoding RNAs (lncRNAs) have drawn growing attention owing to their important effects in various tumors, including hepatocellular carcinoma (HCC). Recently, a newly identified lncRNA, ZFPM2 antisense RNA 1 (ZFPM2-AS1), was reported to serve as an oncogene in gastric cancer. However, its functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xi-wu, Li, Qiu-han, Xu, Zuo-di, Dou, Jin-jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791040/
https://www.ncbi.nlm.nih.gov/pubmed/33414427
http://dx.doi.org/10.1038/s41419-020-03300-4
Descripción
Sumario:Long noncoding RNAs (lncRNAs) have drawn growing attention owing to their important effects in various tumors, including hepatocellular carcinoma (HCC). Recently, a newly identified lncRNA, ZFPM2 antisense RNA 1 (ZFPM2-AS1), was reported to serve as an oncogene in gastric cancer. However, its function in tumors remains largely unknown. In this study, we identified ZFPM2-AS1 as a novel HCC-related lncRNA, which was observed to be distinctly upregulated in HCC tissues and associated with shorter overall survival. Luciferase reporter and chromatin immunoprecipitation assays suggested that overexpression of ZFPM2-AS1 was induced by STAT1. Functional investigations suggested that the inhibition of ZFPM2-AS1 suppressed cell proliferation, metastasis, cell cycle progression while accelerated cell apoptosis. Mechanistic studies showed that there were two binding sites of miR-653 within the sequence of ZFPM2-AS1 and the levels of ZFPM2-AS1 were negatively correlated with miR-653. In addition, ZFPM2-AS1 could reverse the suppressor effects of miR-653 on the proliferation and metastasis of HCC cells by the modulation of GOLM1, a target gene of miR-653. To conclude, we provided a better understanding of the interaction mechanism between ZFPM2-AS-miR-653-GOLM1 axis, which may help develop prognostic biomarkers and therapeutic target for HCC.