Cargando…
Predicting Peritoneal Metastasis of Gastric Cancer Patients Based on Machine Learning
OBJECTIVE: The aim is to explore the prediction effect of 5 machine learning algorithms on peritoneal metastasis of gastric cancer. METHODS: 1080 patients with postoperative gastric cancer were divided into a training group and test group according to the ratio of 7:3. The model of peritoneal metast...
Autores principales: | Zhou, Chengmao, Wang, Ying, Ji, Mu-Huo, Tong, Jianhua, Yang, Jian-Jun, Xia, Hongping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791448/ https://www.ncbi.nlm.nih.gov/pubmed/33115287 http://dx.doi.org/10.1177/1073274820968900 |
Ejemplares similares
-
A machine learning-based predictor for the identification of the recurrence of patients with gastric cancer after operation
por: Zhou, Chengmao, et al.
Publicado: (2021) -
Predicting lung adenocarcinoma prognosis with a novel risk scoring based on platelet-related gene expression
por: Zhou, Chengmao, et al.
Publicado: (2021) -
Identifying Common Genes Related to Platelet and Immunity for Lung Adenocarcinoma Prognosis Prediction
por: Zhou, Chengmao, et al.
Publicado: (2020) -
The prognostic significance of CLEC‐2‐related gene signal in lung adenocarcinoma: A multicenter development and validation cohort
por: Zhou, Chengmao, et al.
Publicado: (2020) -
Supervised Machine Learning Predictive Analytics For Triple-Negative Breast Cancer Death Outcomes
por: Xu, Yucan, et al.
Publicado: (2019)