Cargando…
Opa-Interacting Protein 5 Expression in Human Glioma Tissues Is Essential to the Biological Function of U251 Human Malignant Glioma Cells
Opa-interacting protein 5 (OIP5) is a member of the cancer-testis antigen (CTA) family that elicits a spontaneous antitumor immune response. The failure of current immunotherapies for glioma has prompted the search for novel biomarkers that may be utilized as therapeutic targets. This study aimed to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791457/ https://www.ncbi.nlm.nih.gov/pubmed/33153318 http://dx.doi.org/10.1177/1073274820968914 |
Sumario: | Opa-interacting protein 5 (OIP5) is a member of the cancer-testis antigen (CTA) family that elicits a spontaneous antitumor immune response. The failure of current immunotherapies for glioma has prompted the search for novel biomarkers that may be utilized as therapeutic targets. This study aimed to investigate whether OIP5 serves as a target for malignant glioma immunotherapy. Glioma specimens from 53 adult patients were evaluated for OIP5 expression by immunohistochemical (IHC) staining, and the correlation of OIP5 expression with World Health Organization (WHO) tumor grade was analyzed. Endogenous expression of OIP5 in glioma cell lines was determined via real-time polymerase chain reaction (RT-PCR). Using lentiviral siOIP5, the effect of OIP5 gene knockdown on proliferation, cell cycle, and apoptosis in U251 glioma cells was studied. The results show that OIP5 is overexpressed in glioma tissues and is correlated with WHO tumor grade (P < 0.001). However, OIP5 protein expression is barely detectable in normal adult brain tissues. MTT assays and analysis using the Celigo Imaging Cytometry System reveal that the silencing of OIP5 inhibits U251 cell growth. Cell cycle assays and Annexin V staining show that OIP5 silencing disrupts the balance of the cell cycle and increases U251 cell death. These results indicate that OIP5 is upregulated in malignant glioma specimens but barely detected in normal brain tissues. OIP5 knockdown inhibits the biological function of glioma cells, reinforcing that OIP5 may serve as an immunotherapeutic target for malignant glioma. |
---|