Cargando…
Intraperitoneal injection of Desferal® alleviated the age-related bone loss and senescence of bone marrow stromal cells in rats
BACKGROUND: Age-related bone loss plays a vital role in the development of osteoporosis and osteoporotic fracture. Bone marrow stromal cell (BMSC) senescence is highly associated with osteoporosis and limits the application of BMSCs in regenerative medicine. Hypoxia is an essential component for mai...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791659/ https://www.ncbi.nlm.nih.gov/pubmed/33413663 http://dx.doi.org/10.1186/s13287-020-02112-9 |
Sumario: | BACKGROUND: Age-related bone loss plays a vital role in the development of osteoporosis and osteoporotic fracture. Bone marrow stromal cell (BMSC) senescence is highly associated with osteoporosis and limits the application of BMSCs in regenerative medicine. Hypoxia is an essential component for maintaining the normal physiology of BMSCs. We have reported that activation of hypoxia-induced factor by deletion of von Hippel-Lindau gene in osteochondral progenitor cells protected mice from aging-induced bone loss. However, whether pharmacologically manipulation of hypoxic niche would attenuate age-related bone loss and dysfunction of BMSCs is not well understood. METHODS: Twelve-month-old Sprague-Dawley rats were used as an aged model and were intraperitoneally injected with Desferal® (20, 60 mg/kg weight or vehicle), three times a week for a continuous 8-week period. Two-month-old young rats were set as a reference. After 8 weeks, micro-CT and HE staining were performed to determine the effect of Desferal® on bone loss. In order to investigate the effects of Desferal® on BMSC senescence, 12-month-old rats were treated with high-dose Desferal® (60 mg/kg weight) daily for 10 days. BMSCs were isolated and evaluated using CCK-8 assay, colony-forming cell assay, cell differentiation assay, laser confocal for reactive oxygen species (ROS) level, senescence-associated β-galactosidase (SA-β-gal) staining, and molecular expression test for stemness/senescence-associated genes. RESULTS: Micro-CT and HE staining showed that high-dose Desferal® significantly prevented bone loss in aged rats. Compared with vehicle group, the ex vivo experiments showed that short-term Desferal® administration could promote the potential of BMSC growth (proliferation and colony formation ability) and improve the rebalance of osteogenic and adipogenic differentiation, as well as rejuvenate senescent BMSCs (ROS level and SA-β-gal staining) and revise the expression of stemness/senescence-associated genes. The potential of BMSCs from 12M-H-Desferal® group at least partly revised to the level close to 2-month-old group. CONCLUSIONS: The current study suggested that Desferal®, an iron-chelating agent, could alleviate age-related bone loss in middle-aged rats. Meanwhile, we found that short-term intraperitoneal injection of Desferal® partly rejuvenate BMSCs from aged rats. Overall, we demonstrated a novel role of Desferal® in rejuvenating aged BMSCs and preventing age-related bone loss. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-020-02112-9. |
---|