Cargando…

Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults

BACKGROUND: The sit-to-stand (STS) test has been deployed as surrogate measures of strength or physical performance in sarcopenia diagnosis. This study examines the relationship of two common STS variants – Five Times Sit-to-Stand Test (5TSTS) and 30 s Chair Stand Test (30CST) – with grip strength,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yee, Xianyang Sherman, Ng, Yee Sien, Allen, John Carson, Latib, Aisyah, Tay, Ee Ling, Abu Bakar, Huda Mukhlis, Ho, Chien Yee Jolene, Koh, Wan Cheen Charissa, Kwek, Hwee Heem Theresa, Tay, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791746/
https://www.ncbi.nlm.nih.gov/pubmed/33419399
http://dx.doi.org/10.1186/s11556-020-00255-5
Descripción
Sumario:BACKGROUND: The sit-to-stand (STS) test has been deployed as surrogate measures of strength or physical performance in sarcopenia diagnosis. This study examines the relationship of two common STS variants – Five Times Sit-to-Stand Test (5TSTS) and 30 s Chair Stand Test (30CST) – with grip strength, muscle mass and functional measures, and their impact on sarcopenia prevalence in community-dwelling older adults. METHODS: This is a cross-sectional analysis of 887 community-dwelling adults aged ≥50 years. Participants completed a battery of physical fitness tests - 5TSTS, 30CST, grip strength, gait speed, Timed-Up-and-Go (TUG) for dynamic balance and six-minute walk test (6MWT) for cardiorespiratory endurance. Muscle mass was measured using multi-frequency segmental bioelectrical impedance analysis (BIA). We performed correlation analysis between STS performance and other fitness measures and muscle mass, followed by multiple linear regression for the independent determinants of STS performance. RESULTS: Mean participant age was 67.3±7 years, with female predominance (72.9%). STS tests exhibited weak correlations with grip strength (30CST, r = 0.290; 5TSTS, r = − 0.242; both p< 0.01), and stronger correlations with gait speed (30CST, r = 0.517; 5TSTS, r = − 0.533; both p< 0.01), endurance (30CST, r = 0.558; 5TSTS, r = − 0.531; both p < 0.01) and dynamic balance (30CST, r = − 0.501; 5TSTS, r = 0.646; both p< 0.01). Muscle mass correlated with grip strength but not STS. In multiple regression analysis, all fitness measures were independently associated with 30CST performance. Performance in both STS tests remained independent of muscle mass. There was no significant difference in prevalence of possible sarcopenia diagnosis using grip strength or STS (30CST, 25.0%; 5TSTS, 22.1%; grip strength, 22.3%; p = 0.276). When both measures are used, prevalence is significantly higher (42.0%; p = 0.276). Prevalence of confirmed sarcopenia with inclusion of muscle mass was significantly lower using STS compared with grip strength (30CST, 4.6%; 5TSTS, 4.1% vs. grip strength, 7.1%; p< 0.05). CONCLUSION: In the sarcopenia construct, STS tests better represents muscle physical performance rather than muscle strength. Different subsets of population with possible sarcopenia are identified depending on the test used. The lack of association of STS performance with muscle mass results in a lower prevalence of confirmed sarcopenia compared with grip strength, but may better reflect changes in muscle quality.