Cargando…

Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo

BACKGROUND: Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhidong, Wang, Yuxing, Wang, Qian, Liang, Jiawu, Hu, Wei, Zhao, Sen, Li, Peilin, Zhu, Heng, Li, Zhongli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792202/
https://www.ncbi.nlm.nih.gov/pubmed/33413606
http://dx.doi.org/10.1186/s13287-020-02076-w
_version_ 1783633753125421056
author Zhao, Zhidong
Wang, Yuxing
Wang, Qian
Liang, Jiawu
Hu, Wei
Zhao, Sen
Li, Peilin
Zhu, Heng
Li, Zhongli
author_facet Zhao, Zhidong
Wang, Yuxing
Wang, Qian
Liang, Jiawu
Hu, Wei
Zhao, Sen
Li, Peilin
Zhu, Heng
Li, Zhongli
author_sort Zhao, Zhidong
collection PubMed
description BACKGROUND: Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS: SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS: The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION: We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects.
format Online
Article
Text
id pubmed-7792202
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-77922022021-01-11 Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo Zhao, Zhidong Wang, Yuxing Wang, Qian Liang, Jiawu Hu, Wei Zhao, Sen Li, Peilin Zhu, Heng Li, Zhongli Stem Cell Res Ther Research BACKGROUND: Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS: SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS: The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION: We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects. BioMed Central 2021-01-07 /pmc/articles/PMC7792202/ /pubmed/33413606 http://dx.doi.org/10.1186/s13287-020-02076-w Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Zhao, Zhidong
Wang, Yuxing
Wang, Qian
Liang, Jiawu
Hu, Wei
Zhao, Sen
Li, Peilin
Zhu, Heng
Li, Zhongli
Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title_full Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title_fullStr Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title_full_unstemmed Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title_short Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo
title_sort radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating yap/taz and facilitates cartilage repair in vivo
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792202/
https://www.ncbi.nlm.nih.gov/pubmed/33413606
http://dx.doi.org/10.1186/s13287-020-02076-w
work_keys_str_mv AT zhaozhidong radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT wangyuxing radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT wangqian radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT liangjiawu radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT huwei radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT zhaosen radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT lipeilin radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT zhuheng radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo
AT lizhongli radialextracorporealshockwavepromotessubchondralbonestemprogenitorcellselfrenewalbyactivatingyaptazandfacilitatescartilagerepairinvivo