Cargando…
MHCII3D—Robust Structure Based Prediction of MHC II Binding Peptides
Knowledge of MHC II binding peptides is highly desired in immunological research, particularly in the context of cancer, autoimmune diseases, or allergies. The most successful prediction methods are based on machine learning methods trained on sequences of experimentally characterized binding peptid...
Autores principales: | Laimer, Josef, Lackner, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792572/ https://www.ncbi.nlm.nih.gov/pubmed/33374958 http://dx.doi.org/10.3390/ijms22010012 |
Ejemplares similares
-
DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction
por: You, Ronghui, et al.
Publicado: (2022) -
MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice
por: Gonzalez De La Cruz, Elsa, et al.
Publicado: (2022) -
On Evaluating MHC-II Binding Peptide Prediction Methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2008) -
The Utility of Supertype Clustering in Prediction for Class II MHC-Peptide Binding
por: Shen, Wen-Jun, et al.
Publicado: (2018) -
Prediction of MHC class II binding peptides based on an iterative learning model
por: Murugan, Naveen, et al.
Publicado: (2005)