Cargando…

Co-actions, Isometries, and isomorphism classes of Hilbert modules

We show that a A-linear map of Hilbert A-modules is induced by a unitary Hilbert module operator if and only if it extends to an ordinary unitary on appropriately defined enveloping Hilbert spaces. Applications to the theory of multiplicative unitaries let us to compute the equivalence classes of Hi...

Descripción completa

Detalles Bibliográficos
Autor principal: Kučerovský, Dan Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792664/
https://www.ncbi.nlm.nih.gov/pubmed/33442673
http://dx.doi.org/10.1007/s43036-020-00104-3
Descripción
Sumario:We show that a A-linear map of Hilbert A-modules is induced by a unitary Hilbert module operator if and only if it extends to an ordinary unitary on appropriately defined enveloping Hilbert spaces. Applications to the theory of multiplicative unitaries let us to compute the equivalence classes of Hilbert modules over a class of C*-algebraic quantum groups. We, thus, develop a theory that, for example, could be used to show non-existence of certain co-actions. In particular, we show that the Cuntz semigroup functor takes a co-action to a multiplicative action.