Cargando…
Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network
Gearbox fault diagnosis based on the analysis of vibration signals has been a major research topic for a few decades due to the advantages of vibration characteristics. Such characteristics are used for early fault detection to guarantee the enhanced safety of complex systems and their cost-effectiv...
Autores principales: | Nguyen, Cong Dai, Prosvirin, Alexander E., Kim, Cheol Hong, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792788/ https://www.ncbi.nlm.nih.gov/pubmed/33375085 http://dx.doi.org/10.3390/s21010018 |
Ejemplares similares
-
A Reliable Fault Diagnosis Method for a Gearbox System with Varying Rotational Speeds
por: Nguyen, Cong Dai, et al.
Publicado: (2020) -
Gearbox Fault Identification Model Using an Adaptive Noise Canceling Technique, Heterogeneous Feature Extraction, and Distance Ratio Principal Component Analysis
por: Nguyen, Cong Dai, et al.
Publicado: (2022) -
Blade Rub-Impact Fault Identification Using Autoencoder-Based Nonlinear Function Approximation and a Deep Neural Network
por: Prosvirin, Alexander E., et al.
Publicado: (2020) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
Transformer fault diagnosis using continuous sparse autoencoder
por: Wang, Lukun, et al.
Publicado: (2016)